Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem10 Structured version   Visualization version   GIF version

Theorem stoweidlem10 46025
Description: Lemma for stoweid 46078. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
stoweidlem10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))

Proof of Theorem stoweidlem10
StepHypRef Expression
1 renegcl 11572 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
213ad2ant1 1134 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -𝐴 ∈ ℝ)
3 simp2 1138 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℕ0)
4 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 1)
5 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
6 1red 11262 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 1 ∈ ℝ)
75, 6lenegd 11842 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → (𝐴 ≤ 1 ↔ -1 ≤ -𝐴))
84, 7mpbid 232 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴)
983adant2 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -1 ≤ -𝐴)
10 bernneq 14268 . . 3 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ -𝐴) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
112, 3, 9, 10syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
12 recn 11245 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13123ad2ant1 1134 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝐴 ∈ ℂ)
14 nn0cn 12536 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
15143ad2ant2 1135 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℂ)
16 1cnd 11256 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 1 ∈ ℂ)
17 mulneg1 11699 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝐴 · 𝑁) = -(𝐴 · 𝑁))
1817oveq2d 7447 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
19183adant3 1133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
20 simp3 1139 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 1 ∈ ℂ)
21 mulcl 11239 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
22213adant3 1133 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
2320, 22negsubd 11626 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + -(𝐴 · 𝑁)) = (1 − (𝐴 · 𝑁)))
24 mulcom 11241 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
2524oveq2d 7447 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
26253adant3 1133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2719, 23, 263eqtrd 2781 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2813, 15, 16, 27syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
29 1cnd 11256 . . . . 5 (𝐴 ∈ ℝ → 1 ∈ ℂ)
3029, 12negsubd 11626 . . . 4 (𝐴 ∈ ℝ → (1 + -𝐴) = (1 − 𝐴))
3130oveq1d 7446 . . 3 (𝐴 ∈ ℝ → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
32313ad2ant1 1134 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
3311, 28, 323brtr3d 5174 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493  0cn0 12526  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  stoweidlem24  46039
  Copyright terms: Public domain W3C validator