Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem10 Structured version   Visualization version   GIF version

Theorem stoweidlem10 45987
Description: Lemma for stoweid 46040. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
stoweidlem10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))

Proof of Theorem stoweidlem10
StepHypRef Expression
1 renegcl 11544 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
213ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -𝐴 ∈ ℝ)
3 simp2 1137 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℕ0)
4 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 1)
5 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
6 1red 11234 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 1 ∈ ℝ)
75, 6lenegd 11814 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → (𝐴 ≤ 1 ↔ -1 ≤ -𝐴))
84, 7mpbid 232 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴)
983adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -1 ≤ -𝐴)
10 bernneq 14245 . . 3 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ -𝐴) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
112, 3, 9, 10syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
12 recn 11217 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13123ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝐴 ∈ ℂ)
14 nn0cn 12509 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
15143ad2ant2 1134 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℂ)
16 1cnd 11228 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 1 ∈ ℂ)
17 mulneg1 11671 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝐴 · 𝑁) = -(𝐴 · 𝑁))
1817oveq2d 7419 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
19183adant3 1132 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
20 simp3 1138 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 1 ∈ ℂ)
21 mulcl 11211 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
22213adant3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
2320, 22negsubd 11598 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + -(𝐴 · 𝑁)) = (1 − (𝐴 · 𝑁)))
24 mulcom 11213 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
2524oveq2d 7419 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
26253adant3 1132 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2719, 23, 263eqtrd 2774 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2813, 15, 16, 27syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
29 1cnd 11228 . . . . 5 (𝐴 ∈ ℝ → 1 ∈ ℂ)
3029, 12negsubd 11598 . . . 4 (𝐴 ∈ ℝ → (1 + -𝐴) = (1 − 𝐴))
3130oveq1d 7418 . . 3 (𝐴 ∈ ℝ → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
32313ad2ant1 1133 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
3311, 28, 323brtr3d 5150 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  (class class class)co 7403  cc 11125  cr 11126  1c1 11128   + caddc 11130   · cmul 11132  cle 11268  cmin 11464  -cneg 11465  0cn0 12499  cexp 14077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-seq 14018  df-exp 14078
This theorem is referenced by:  stoweidlem24  46001
  Copyright terms: Public domain W3C validator