![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem10 | Structured version Visualization version GIF version |
Description: Lemma for stoweid 45984. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem10 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 11599 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → -𝐴 ∈ ℝ) |
3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 𝑁 ∈ ℕ0) | |
4 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 1) | |
5 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ) | |
6 | 1red 11291 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 1 ∈ ℝ) | |
7 | 5, 6 | lenegd 11869 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → (𝐴 ≤ 1 ↔ -1 ≤ -𝐴)) |
8 | 4, 7 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴) |
9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴) |
10 | bernneq 14278 | . . 3 ⊢ ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ -𝐴) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁)) | |
11 | 2, 3, 9, 10 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁)) |
12 | recn 11274 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℂ) |
14 | nn0cn 12563 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
15 | 14 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 𝑁 ∈ ℂ) |
16 | 1cnd 11285 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 1 ∈ ℂ) | |
17 | mulneg1 11726 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝐴 · 𝑁) = -(𝐴 · 𝑁)) | |
18 | 17 | oveq2d 7464 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁))) |
19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁))) |
20 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 1 ∈ ℂ) | |
21 | mulcl 11268 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ) | |
22 | 21 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ) |
23 | 20, 22 | negsubd 11653 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + -(𝐴 · 𝑁)) = (1 − (𝐴 · 𝑁))) |
24 | mulcom 11270 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴)) | |
25 | 24 | oveq2d 7464 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
26 | 25 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
27 | 19, 23, 26 | 3eqtrd 2784 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
28 | 13, 15, 16, 27 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
29 | 1cnd 11285 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℂ) | |
30 | 29, 12 | negsubd 11653 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 + -𝐴) = (1 − 𝐴)) |
31 | 30 | oveq1d 7463 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁)) |
32 | 31 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁)) |
33 | 11, 28, 32 | 3brtr3d 5197 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 ℝcr 11183 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 − cmin 11520 -cneg 11521 ℕ0cn0 12553 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: stoweidlem24 45945 |
Copyright terms: Public domain | W3C validator |