Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem10 Structured version   Visualization version   GIF version

Theorem stoweidlem10 45965
Description: Lemma for stoweid 46018. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
stoweidlem10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))

Proof of Theorem stoweidlem10
StepHypRef Expression
1 renegcl 11569 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
213ad2ant1 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -𝐴 ∈ ℝ)
3 simp2 1136 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℕ0)
4 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 1)
5 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ)
6 1red 11259 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 1 ∈ ℝ)
75, 6lenegd 11839 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → (𝐴 ≤ 1 ↔ -1 ≤ -𝐴))
84, 7mpbid 232 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴)
983adant2 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → -1 ≤ -𝐴)
10 bernneq 14264 . . 3 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ -𝐴) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
112, 3, 9, 10syl3anc 1370 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁))
12 recn 11242 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
13123ad2ant1 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝐴 ∈ ℂ)
14 nn0cn 12533 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
15143ad2ant2 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 𝑁 ∈ ℂ)
16 1cnd 11253 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → 1 ∈ ℂ)
17 mulneg1 11696 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝐴 · 𝑁) = -(𝐴 · 𝑁))
1817oveq2d 7446 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
19183adant3 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁)))
20 simp3 1137 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 1 ∈ ℂ)
21 mulcl 11236 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
22213adant3 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ)
2320, 22negsubd 11623 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + -(𝐴 · 𝑁)) = (1 − (𝐴 · 𝑁)))
24 mulcom 11238 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
2524oveq2d 7446 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
26253adant3 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2719, 23, 263eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
2813, 15, 16, 27syl3anc 1370 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴)))
29 1cnd 11253 . . . . 5 (𝐴 ∈ ℝ → 1 ∈ ℂ)
3029, 12negsubd 11623 . . . 4 (𝐴 ∈ ℝ → (1 + -𝐴) = (1 − 𝐴))
3130oveq1d 7445 . . 3 (𝐴 ∈ ℝ → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
32313ad2ant1 1132 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁))
3311, 28, 323brtr3d 5178 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  cc 11150  cr 11151  1c1 11153   + caddc 11155   · cmul 11157  cle 11293  cmin 11489  -cneg 11490  0cn0 12523  cexp 14098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-exp 14099
This theorem is referenced by:  stoweidlem24  45979
  Copyright terms: Public domain W3C validator