| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for stoweid 46171. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem10 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl 11424 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → -𝐴 ∈ ℝ) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 𝑁 ∈ ℕ0) | |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 1) | |
| 5 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ) | |
| 6 | 1red 11113 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → 1 ∈ ℝ) | |
| 7 | 5, 6 | lenegd 11696 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → (𝐴 ≤ 1 ↔ -1 ≤ -𝐴)) |
| 8 | 4, 7 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴) |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → -1 ≤ -𝐴) |
| 10 | bernneq 14136 | . . 3 ⊢ ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ -𝐴) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁)) | |
| 11 | 2, 3, 9, 10 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) ≤ ((1 + -𝐴)↑𝑁)) |
| 12 | recn 11096 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℂ) |
| 14 | nn0cn 12391 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 15 | 14 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 𝑁 ∈ ℂ) |
| 16 | 1cnd 11107 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → 1 ∈ ℂ) | |
| 17 | mulneg1 11553 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-𝐴 · 𝑁) = -(𝐴 · 𝑁)) | |
| 18 | 17 | oveq2d 7362 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁))) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 + -(𝐴 · 𝑁))) |
| 20 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 1 ∈ ℂ) | |
| 21 | mulcl 11090 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ) | |
| 22 | 21 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 𝑁) ∈ ℂ) |
| 23 | 20, 22 | negsubd 11478 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + -(𝐴 · 𝑁)) = (1 − (𝐴 · 𝑁))) |
| 24 | mulcom 11092 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴)) | |
| 25 | 24 | oveq2d 7362 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
| 26 | 25 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 − (𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
| 27 | 19, 23, 26 | 3eqtrd 2770 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
| 28 | 13, 15, 16, 27 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 + (-𝐴 · 𝑁)) = (1 − (𝑁 · 𝐴))) |
| 29 | 1cnd 11107 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℂ) | |
| 30 | 29, 12 | negsubd 11478 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 + -𝐴) = (1 − 𝐴)) |
| 31 | 30 | oveq1d 7361 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁)) |
| 32 | 31 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → ((1 + -𝐴)↑𝑁) = ((1 − 𝐴)↑𝑁)) |
| 33 | 11, 28, 32 | 3brtr3d 5120 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℂcc 11004 ℝcr 11005 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 -cneg 11345 ℕ0cn0 12381 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: stoweidlem24 46132 |
| Copyright terms: Public domain | W3C validator |