| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubsd | Structured version Visualization version GIF version | ||
| Description: Law for surreal addition and subtraction. (Contributed by Scott Fenton, 4-Mar-2025.) |
| Ref | Expression |
|---|---|
| addsubsassd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| addsubsassd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| addsubsassd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| Ref | Expression |
|---|---|
| addsubsd | ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 -s 𝐶) +s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsubsassd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | addsubsassd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | addsubsassd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 4 | 3 | negscld 27989 | . . 3 ⊢ (𝜑 → ( -us ‘𝐶) ∈ No ) |
| 5 | 1, 2, 4 | adds32d 27960 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) +s ( -us ‘𝐶)) = ((𝐴 +s ( -us ‘𝐶)) +s 𝐵)) |
| 6 | 1, 2 | addscld 27933 | . . 3 ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No ) |
| 7 | 6, 3 | subsvald 28011 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 +s 𝐵) +s ( -us ‘𝐶))) |
| 8 | 1, 3 | subsvald 28011 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐶) = (𝐴 +s ( -us ‘𝐶))) |
| 9 | 8 | oveq1d 7370 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐵) = ((𝐴 +s ( -us ‘𝐶)) +s 𝐵)) |
| 10 | 5, 7, 9 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 -s 𝐶) +s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 No csur 27588 +s cadds 27912 -us cnegs 27971 -s csubs 27972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 df-subs 27974 |
| This theorem is referenced by: addsubs4d 28050 mulsproplem5 28069 mulsproplem6 28070 mulsproplem7 28071 mulsproplem8 28072 ssltmul1 28096 ssltmul2 28097 mulsuniflem 28098 addsdilem3 28102 addsdilem4 28103 mulsasslem3 28114 mulsunif2lem 28118 zseo 28355 pw2cut2 28392 readdscl 28411 |
| Copyright terms: Public domain | W3C validator |