| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subsubs4d | Structured version Visualization version GIF version | ||
| Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| subsubs4d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| subsubs4d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| subsubs4d.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| Ref | Expression |
|---|---|
| subsubs4d | ⊢ (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = (𝐴 -s (𝐵 +s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubs4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | subsubs4d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | 2 | negscld 27943 | . . 3 ⊢ (𝜑 → ( -us ‘𝐵) ∈ No ) |
| 4 | subsubs4d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 5 | 4 | negscld 27943 | . . 3 ⊢ (𝜑 → ( -us ‘𝐶) ∈ No ) |
| 6 | 1, 3, 5 | addsassd 27913 | . 2 ⊢ (𝜑 → ((𝐴 +s ( -us ‘𝐵)) +s ( -us ‘𝐶)) = (𝐴 +s (( -us ‘𝐵) +s ( -us ‘𝐶)))) |
| 7 | 1, 2 | subsvald 27965 | . . . 4 ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) |
| 8 | 7 | oveq1d 7402 | . . 3 ⊢ (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = ((𝐴 +s ( -us ‘𝐵)) -s 𝐶)) |
| 9 | 1, 3 | addscld 27887 | . . . 4 ⊢ (𝜑 → (𝐴 +s ( -us ‘𝐵)) ∈ No ) |
| 10 | 9, 4 | subsvald 27965 | . . 3 ⊢ (𝜑 → ((𝐴 +s ( -us ‘𝐵)) -s 𝐶) = ((𝐴 +s ( -us ‘𝐵)) +s ( -us ‘𝐶))) |
| 11 | 8, 10 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = ((𝐴 +s ( -us ‘𝐵)) +s ( -us ‘𝐶))) |
| 12 | 2, 4 | addscld 27887 | . . . 4 ⊢ (𝜑 → (𝐵 +s 𝐶) ∈ No ) |
| 13 | 1, 12 | subsvald 27965 | . . 3 ⊢ (𝜑 → (𝐴 -s (𝐵 +s 𝐶)) = (𝐴 +s ( -us ‘(𝐵 +s 𝐶)))) |
| 14 | negsdi 27956 | . . . . 5 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘(𝐵 +s 𝐶)) = (( -us ‘𝐵) +s ( -us ‘𝐶))) | |
| 15 | 2, 4, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( -us ‘(𝐵 +s 𝐶)) = (( -us ‘𝐵) +s ( -us ‘𝐶))) |
| 16 | 15 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (𝐴 +s ( -us ‘(𝐵 +s 𝐶))) = (𝐴 +s (( -us ‘𝐵) +s ( -us ‘𝐶)))) |
| 17 | 13, 16 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝐴 -s (𝐵 +s 𝐶)) = (𝐴 +s (( -us ‘𝐵) +s ( -us ‘𝐶)))) |
| 18 | 6, 11, 17 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = (𝐴 -s (𝐵 +s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 No csur 27551 +s cadds 27866 -us cnegs 27925 -s csubs 27926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-norec2 27856 df-adds 27867 df-negs 27927 df-subs 27928 |
| This theorem is referenced by: addsubs4d 28004 addsdilem3 28056 addsdilem4 28057 mulsasslem3 28068 mulsunif2lem 28072 zseo 28308 |
| Copyright terms: Public domain | W3C validator |