![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsubsassd | Structured version Visualization version GIF version |
Description: Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025.) |
Ref | Expression |
---|---|
addsubsassd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
addsubsassd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
addsubsassd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
Ref | Expression |
---|---|
addsubsassd | ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = (𝐴 +s (𝐵 -s 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsubsassd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | addsubsassd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
3 | addsubsassd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
4 | 3 | negscld 27500 | . . 3 ⊢ (𝜑 → ( -us ‘𝐶) ∈ No ) |
5 | 1, 2, 4 | addsassd 27478 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) +s ( -us ‘𝐶)) = (𝐴 +s (𝐵 +s ( -us ‘𝐶)))) |
6 | 1, 2 | addscld 27453 | . . 3 ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No ) |
7 | 6, 3 | subsvald 27522 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 +s 𝐵) +s ( -us ‘𝐶))) |
8 | 2, 3 | subsvald 27522 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐶) = (𝐵 +s ( -us ‘𝐶))) |
9 | 8 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝐴 +s (𝐵 -s 𝐶)) = (𝐴 +s (𝐵 +s ( -us ‘𝐶)))) |
10 | 5, 7, 9 | 3eqtr4d 2782 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = (𝐴 +s (𝐵 -s 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 No csur 27132 +s cadds 27432 -us cnegs 27483 -s csubs 27484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-nadd 8661 df-no 27135 df-slt 27136 df-bday 27137 df-sle 27237 df-sslt 27272 df-scut 27274 df-0s 27314 df-made 27331 df-old 27332 df-left 27334 df-right 27335 df-norec 27411 df-norec2 27422 df-adds 27433 df-negs 27485 df-subs 27486 |
This theorem is referenced by: mulsproplem5 27565 mulsproplem6 27566 mulsproplem7 27567 mulsproplem8 27568 mulsproplem12 27572 mulsuniflem 27593 addsdilem4 27598 mulsasslem3 27609 precsexlem11 27652 |
Copyright terms: Public domain | W3C validator |