MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltsubsubbd Structured version   Visualization version   GIF version

Theorem sltsubsubbd 28039
Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.)
Hypotheses
Ref Expression
sltsubsubbd.1 (𝜑𝐴 No )
sltsubsubbd.2 (𝜑𝐵 No )
sltsubsubbd.3 (𝜑𝐶 No )
sltsubsubbd.4 (𝜑𝐷 No )
Assertion
Ref Expression
sltsubsubbd (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷)))

Proof of Theorem sltsubsubbd
StepHypRef Expression
1 sltsubsubbd.1 . . . . 5 (𝜑𝐴 No )
2 sltsubsubbd.3 . . . . 5 (𝜑𝐶 No )
3 npcans 28031 . . . . 5 ((𝐴 No 𝐶 No ) → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴)
41, 2, 3syl2anc 582 . . . 4 (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴)
5 sltsubsubbd.2 . . . . 5 (𝜑𝐵 No )
6 npcans 28031 . . . . 5 ((𝐴 No 𝐵 No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴)
71, 5, 6syl2anc 582 . . . 4 (𝜑 → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴)
84, 7eqtr4d 2768 . . 3 (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = ((𝐴 -s 𝐵) +s 𝐵))
95, 2addscomd 27930 . . . . 5 (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵))
109oveq1d 7434 . . . 4 (𝜑 → ((𝐵 +s 𝐶) +s ( -us𝐷)) = ((𝐶 +s 𝐵) +s ( -us𝐷)))
11 sltsubsubbd.4 . . . . . . 7 (𝜑𝐷 No )
125, 11subsvald 28017 . . . . . 6 (𝜑 → (𝐵 -s 𝐷) = (𝐵 +s ( -us𝐷)))
1312oveq1d 7434 . . . . 5 (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s ( -us𝐷)) +s 𝐶))
1411negscld 27995 . . . . . 6 (𝜑 → ( -us𝐷) ∈ No )
155, 14, 2adds32d 27970 . . . . 5 (𝜑 → ((𝐵 +s ( -us𝐷)) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us𝐷)))
1613, 15eqtrd 2765 . . . 4 (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us𝐷)))
172, 11subsvald 28017 . . . . . 6 (𝜑 → (𝐶 -s 𝐷) = (𝐶 +s ( -us𝐷)))
1817oveq1d 7434 . . . . 5 (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s ( -us𝐷)) +s 𝐵))
192, 14, 5adds32d 27970 . . . . 5 (𝜑 → ((𝐶 +s ( -us𝐷)) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us𝐷)))
2018, 19eqtrd 2765 . . . 4 (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us𝐷)))
2110, 16, 203eqtr4d 2775 . . 3 (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐶 -s 𝐷) +s 𝐵))
228, 21breq12d 5162 . 2 (𝜑 → (((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵)))
231, 2subscld 28019 . . 3 (𝜑 → (𝐴 -s 𝐶) ∈ No )
245, 11subscld 28019 . . 3 (𝜑 → (𝐵 -s 𝐷) ∈ No )
2523, 24, 2sltadd1d 27961 . 2 (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ ((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶)))
261, 5subscld 28019 . . 3 (𝜑 → (𝐴 -s 𝐵) ∈ No )
272, 11subscld 28019 . . 3 (𝜑 → (𝐶 -s 𝐷) ∈ No )
2826, 27, 5sltadd1d 27961 . 2 (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵)))
2922, 25, 283bitr4d 310 1 (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6549  (class class class)co 7419   No csur 27618   <s cslt 27619   +s cadds 27922   -us cnegs 27978   -s csubs 27979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27980  df-subs 27981
This theorem is referenced by:  sltsubsub3bd  28041  slesubsub3bd  28044  mulsproplem6  28071  mulsproplem7  28072  mulsproplem8  28073
  Copyright terms: Public domain W3C validator