![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltsubsubbd | Structured version Visualization version GIF version |
Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
Ref | Expression |
---|---|
sltsubsubbd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltsubsubbd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltsubsubbd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sltsubsubbd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
Ref | Expression |
---|---|
sltsubsubbd | ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsubsubbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | sltsubsubbd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
3 | npcans 27899 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) | |
4 | 1, 2, 3 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) |
5 | sltsubsubbd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
6 | npcans 27899 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | |
7 | 1, 5, 6 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) |
8 | 4, 7 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = ((𝐴 -s 𝐵) +s 𝐵)) |
9 | 5, 2 | addscomd 27800 | . . . . 5 ⊢ (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
10 | 9 | oveq1d 7416 | . . . 4 ⊢ (𝜑 → ((𝐵 +s 𝐶) +s ( -us ‘𝐷)) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
11 | sltsubsubbd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ No ) | |
12 | 5, 11 | subsvald 27887 | . . . . . 6 ⊢ (𝜑 → (𝐵 -s 𝐷) = (𝐵 +s ( -us ‘𝐷))) |
13 | 12 | oveq1d 7416 | . . . . 5 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s ( -us ‘𝐷)) +s 𝐶)) |
14 | 11 | negscld 27865 | . . . . . 6 ⊢ (𝜑 → ( -us ‘𝐷) ∈ No ) |
15 | 5, 14, 2 | adds32d 27840 | . . . . 5 ⊢ (𝜑 → ((𝐵 +s ( -us ‘𝐷)) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
16 | 13, 15 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
17 | 2, 11 | subsvald 27887 | . . . . . 6 ⊢ (𝜑 → (𝐶 -s 𝐷) = (𝐶 +s ( -us ‘𝐷))) |
18 | 17 | oveq1d 7416 | . . . . 5 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s ( -us ‘𝐷)) +s 𝐵)) |
19 | 2, 14, 5 | adds32d 27840 | . . . . 5 ⊢ (𝜑 → ((𝐶 +s ( -us ‘𝐷)) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
20 | 18, 19 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
21 | 10, 16, 20 | 3eqtr4d 2774 | . . 3 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐶 -s 𝐷) +s 𝐵)) |
22 | 8, 21 | breq12d 5151 | . 2 ⊢ (𝜑 → (((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
23 | 1, 2 | subscld 27889 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐶) ∈ No ) |
24 | 5, 11 | subscld 27889 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐷) ∈ No ) |
25 | 23, 24, 2 | sltadd1d 27831 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ ((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶))) |
26 | 1, 5 | subscld 27889 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
27 | 2, 11 | subscld 27889 | . . 3 ⊢ (𝜑 → (𝐶 -s 𝐷) ∈ No ) |
28 | 26, 27, 5 | sltadd1d 27831 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
29 | 22, 25, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 No csur 27489 <s cslt 27490 +s cadds 27792 -us cnegs 27848 -s csubs 27849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-1o 8461 df-2o 8462 df-nadd 8661 df-no 27492 df-slt 27493 df-bday 27494 df-sle 27594 df-sslt 27630 df-scut 27632 df-0s 27673 df-made 27690 df-old 27691 df-left 27693 df-right 27694 df-norec 27771 df-norec2 27782 df-adds 27793 df-negs 27850 df-subs 27851 |
This theorem is referenced by: sltsubsub3bd 27909 slesubsub3bd 27912 mulsproplem6 27937 mulsproplem7 27938 mulsproplem8 27939 |
Copyright terms: Public domain | W3C validator |