![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltsubsubbd | Structured version Visualization version GIF version |
Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
Ref | Expression |
---|---|
sltsubsubbd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltsubsubbd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltsubsubbd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sltsubsubbd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
Ref | Expression |
---|---|
sltsubsubbd | ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsubsubbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | sltsubsubbd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
3 | npcans 27531 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) |
5 | sltsubsubbd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
6 | npcans 27531 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | |
7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) |
8 | 4, 7 | eqtr4d 2775 | . . 3 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = ((𝐴 -s 𝐵) +s 𝐵)) |
9 | 5, 2 | addscomd 27440 | . . . . 5 ⊢ (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
10 | 9 | oveq1d 7420 | . . . 4 ⊢ (𝜑 → ((𝐵 +s 𝐶) +s ( -us ‘𝐷)) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
11 | sltsubsubbd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ No ) | |
12 | 5, 11 | subsvald 27522 | . . . . . 6 ⊢ (𝜑 → (𝐵 -s 𝐷) = (𝐵 +s ( -us ‘𝐷))) |
13 | 12 | oveq1d 7420 | . . . . 5 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s ( -us ‘𝐷)) +s 𝐶)) |
14 | 11 | negscld 27500 | . . . . . 6 ⊢ (𝜑 → ( -us ‘𝐷) ∈ No ) |
15 | 5, 14, 2 | adds32d 27479 | . . . . 5 ⊢ (𝜑 → ((𝐵 +s ( -us ‘𝐷)) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
16 | 13, 15 | eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
17 | 2, 11 | subsvald 27522 | . . . . . 6 ⊢ (𝜑 → (𝐶 -s 𝐷) = (𝐶 +s ( -us ‘𝐷))) |
18 | 17 | oveq1d 7420 | . . . . 5 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s ( -us ‘𝐷)) +s 𝐵)) |
19 | 2, 14, 5 | adds32d 27479 | . . . . 5 ⊢ (𝜑 → ((𝐶 +s ( -us ‘𝐷)) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
20 | 18, 19 | eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
21 | 10, 16, 20 | 3eqtr4d 2782 | . . 3 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐶 -s 𝐷) +s 𝐵)) |
22 | 8, 21 | breq12d 5160 | . 2 ⊢ (𝜑 → (((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
23 | 1, 2 | subscld 27524 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐶) ∈ No ) |
24 | 5, 11 | subscld 27524 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐷) ∈ No ) |
25 | 23, 24, 2 | sltadd1d 27470 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ ((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶))) |
26 | 1, 5 | subscld 27524 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
27 | 2, 11 | subscld 27524 | . . 3 ⊢ (𝜑 → (𝐶 -s 𝐷) ∈ No ) |
28 | 26, 27, 5 | sltadd1d 27470 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
29 | 22, 25, 28 | 3bitr4d 310 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 No csur 27132 <s cslt 27133 +s cadds 27432 -us cnegs 27483 -s csubs 27484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-nadd 8661 df-no 27135 df-slt 27136 df-bday 27137 df-sle 27237 df-sslt 27272 df-scut 27274 df-0s 27314 df-made 27331 df-old 27332 df-left 27334 df-right 27335 df-norec 27411 df-norec2 27422 df-adds 27433 df-negs 27485 df-subs 27486 |
This theorem is referenced by: sltsubsub3bd 27541 slesubsub3bd 27544 mulsproplem6 27566 mulsproplem7 27567 mulsproplem8 27568 |
Copyright terms: Public domain | W3C validator |