![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltsubsubbd | Structured version Visualization version GIF version |
Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
Ref | Expression |
---|---|
sltsubsubbd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltsubsubbd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
sltsubsubbd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
sltsubsubbd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
Ref | Expression |
---|---|
sltsubsubbd | ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsubsubbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | sltsubsubbd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
3 | npcans 28120 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) |
5 | sltsubsubbd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
6 | npcans 28120 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | |
7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) |
8 | 4, 7 | eqtr4d 2778 | . . 3 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = ((𝐴 -s 𝐵) +s 𝐵)) |
9 | 5, 2 | addscomd 28015 | . . . . 5 ⊢ (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
10 | 9 | oveq1d 7446 | . . . 4 ⊢ (𝜑 → ((𝐵 +s 𝐶) +s ( -us ‘𝐷)) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
11 | sltsubsubbd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ No ) | |
12 | 5, 11 | subsvald 28106 | . . . . . 6 ⊢ (𝜑 → (𝐵 -s 𝐷) = (𝐵 +s ( -us ‘𝐷))) |
13 | 12 | oveq1d 7446 | . . . . 5 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s ( -us ‘𝐷)) +s 𝐶)) |
14 | 11 | negscld 28084 | . . . . . 6 ⊢ (𝜑 → ( -us ‘𝐷) ∈ No ) |
15 | 5, 14, 2 | adds32d 28055 | . . . . 5 ⊢ (𝜑 → ((𝐵 +s ( -us ‘𝐷)) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
16 | 13, 15 | eqtrd 2775 | . . . 4 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
17 | 2, 11 | subsvald 28106 | . . . . . 6 ⊢ (𝜑 → (𝐶 -s 𝐷) = (𝐶 +s ( -us ‘𝐷))) |
18 | 17 | oveq1d 7446 | . . . . 5 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s ( -us ‘𝐷)) +s 𝐵)) |
19 | 2, 14, 5 | adds32d 28055 | . . . . 5 ⊢ (𝜑 → ((𝐶 +s ( -us ‘𝐷)) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
20 | 18, 19 | eqtrd 2775 | . . . 4 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
21 | 10, 16, 20 | 3eqtr4d 2785 | . . 3 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐶 -s 𝐷) +s 𝐵)) |
22 | 8, 21 | breq12d 5161 | . 2 ⊢ (𝜑 → (((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
23 | 1, 2 | subscld 28108 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐶) ∈ No ) |
24 | 5, 11 | subscld 28108 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐷) ∈ No ) |
25 | 23, 24, 2 | sltadd1d 28046 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ ((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶))) |
26 | 1, 5 | subscld 28108 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
27 | 2, 11 | subscld 28108 | . . 3 ⊢ (𝜑 → (𝐶 -s 𝐷) ∈ No ) |
28 | 26, 27, 5 | sltadd1d 28046 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
29 | 22, 25, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 No csur 27699 <s cslt 27700 +s cadds 28007 -us cnegs 28066 -s csubs 28067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-1o 8505 df-2o 8506 df-nadd 8703 df-no 27702 df-slt 27703 df-bday 27704 df-sle 27805 df-sslt 27841 df-scut 27843 df-0s 27884 df-made 27901 df-old 27902 df-left 27904 df-right 27905 df-norec 27986 df-norec2 27997 df-adds 28008 df-negs 28068 df-subs 28069 |
This theorem is referenced by: sltsubsub3bd 28130 slesubsub3bd 28133 mulsproplem6 28162 mulsproplem7 28163 mulsproplem8 28164 |
Copyright terms: Public domain | W3C validator |