| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltsubsubbd | Structured version Visualization version GIF version | ||
| Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| sltsubsubbd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltsubsubbd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| sltsubsubbd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| sltsubsubbd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
| Ref | Expression |
|---|---|
| sltsubsubbd | ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsubsubbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | sltsubsubbd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | npcans 28036 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) |
| 5 | sltsubsubbd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 6 | npcans 28036 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) |
| 8 | 4, 7 | eqtr4d 2774 | . . 3 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = ((𝐴 -s 𝐵) +s 𝐵)) |
| 9 | 5, 2 | addscomd 27931 | . . . . 5 ⊢ (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
| 10 | 9 | oveq1d 7425 | . . . 4 ⊢ (𝜑 → ((𝐵 +s 𝐶) +s ( -us ‘𝐷)) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
| 11 | sltsubsubbd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ No ) | |
| 12 | 5, 11 | subsvald 28022 | . . . . . 6 ⊢ (𝜑 → (𝐵 -s 𝐷) = (𝐵 +s ( -us ‘𝐷))) |
| 13 | 12 | oveq1d 7425 | . . . . 5 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s ( -us ‘𝐷)) +s 𝐶)) |
| 14 | 11 | negscld 28000 | . . . . . 6 ⊢ (𝜑 → ( -us ‘𝐷) ∈ No ) |
| 15 | 5, 14, 2 | adds32d 27971 | . . . . 5 ⊢ (𝜑 → ((𝐵 +s ( -us ‘𝐷)) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
| 16 | 13, 15 | eqtrd 2771 | . . . 4 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
| 17 | 2, 11 | subsvald 28022 | . . . . . 6 ⊢ (𝜑 → (𝐶 -s 𝐷) = (𝐶 +s ( -us ‘𝐷))) |
| 18 | 17 | oveq1d 7425 | . . . . 5 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s ( -us ‘𝐷)) +s 𝐵)) |
| 19 | 2, 14, 5 | adds32d 27971 | . . . . 5 ⊢ (𝜑 → ((𝐶 +s ( -us ‘𝐷)) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
| 20 | 18, 19 | eqtrd 2771 | . . . 4 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
| 21 | 10, 16, 20 | 3eqtr4d 2781 | . . 3 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐶 -s 𝐷) +s 𝐵)) |
| 22 | 8, 21 | breq12d 5137 | . 2 ⊢ (𝜑 → (((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
| 23 | 1, 2 | subscld 28024 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐶) ∈ No ) |
| 24 | 5, 11 | subscld 28024 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐷) ∈ No ) |
| 25 | 23, 24, 2 | sltadd1d 27962 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ ((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶))) |
| 26 | 1, 5 | subscld 28024 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
| 27 | 2, 11 | subscld 28024 | . . 3 ⊢ (𝜑 → (𝐶 -s 𝐷) ∈ No ) |
| 28 | 26, 27, 5 | sltadd1d 27962 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
| 29 | 22, 25, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 No csur 27608 <s cslt 27609 +s cadds 27923 -us cnegs 27982 -s csubs 27983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-nadd 8683 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-made 27812 df-old 27813 df-left 27815 df-right 27816 df-norec 27902 df-norec2 27913 df-adds 27924 df-negs 27984 df-subs 27985 |
| This theorem is referenced by: sltsubsub3bd 28046 slesubsub3bd 28049 mulsproplem6 28081 mulsproplem7 28082 mulsproplem8 28083 |
| Copyright terms: Public domain | W3C validator |