| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltsubsubbd | Structured version Visualization version GIF version | ||
| Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| sltsubsubbd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltsubsubbd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| sltsubsubbd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| sltsubsubbd.4 | ⊢ (𝜑 → 𝐷 ∈ No ) |
| Ref | Expression |
|---|---|
| sltsubsubbd | ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsubsubbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | sltsubsubbd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | npcans 28015 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴) |
| 5 | sltsubsubbd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 6 | npcans 28015 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) |
| 8 | 4, 7 | eqtr4d 2769 | . . 3 ⊢ (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = ((𝐴 -s 𝐵) +s 𝐵)) |
| 9 | 5, 2 | addscomd 27910 | . . . . 5 ⊢ (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
| 10 | 9 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → ((𝐵 +s 𝐶) +s ( -us ‘𝐷)) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
| 11 | sltsubsubbd.4 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ No ) | |
| 12 | 5, 11 | subsvald 28001 | . . . . . 6 ⊢ (𝜑 → (𝐵 -s 𝐷) = (𝐵 +s ( -us ‘𝐷))) |
| 13 | 12 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s ( -us ‘𝐷)) +s 𝐶)) |
| 14 | 11 | negscld 27979 | . . . . . 6 ⊢ (𝜑 → ( -us ‘𝐷) ∈ No ) |
| 15 | 5, 14, 2 | adds32d 27950 | . . . . 5 ⊢ (𝜑 → ((𝐵 +s ( -us ‘𝐷)) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
| 16 | 13, 15 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us ‘𝐷))) |
| 17 | 2, 11 | subsvald 28001 | . . . . . 6 ⊢ (𝜑 → (𝐶 -s 𝐷) = (𝐶 +s ( -us ‘𝐷))) |
| 18 | 17 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s ( -us ‘𝐷)) +s 𝐵)) |
| 19 | 2, 14, 5 | adds32d 27950 | . . . . 5 ⊢ (𝜑 → ((𝐶 +s ( -us ‘𝐷)) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
| 20 | 18, 19 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us ‘𝐷))) |
| 21 | 10, 16, 20 | 3eqtr4d 2776 | . . 3 ⊢ (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐶 -s 𝐷) +s 𝐵)) |
| 22 | 8, 21 | breq12d 5102 | . 2 ⊢ (𝜑 → (((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
| 23 | 1, 2 | subscld 28003 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐶) ∈ No ) |
| 24 | 5, 11 | subscld 28003 | . . 3 ⊢ (𝜑 → (𝐵 -s 𝐷) ∈ No ) |
| 25 | 23, 24, 2 | sltadd1d 27941 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ ((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶))) |
| 26 | 1, 5 | subscld 28003 | . . 3 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
| 27 | 2, 11 | subscld 28003 | . . 3 ⊢ (𝜑 → (𝐶 -s 𝐷) ∈ No ) |
| 28 | 26, 27, 5 | sltadd1d 27941 | . 2 ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵))) |
| 29 | 22, 25, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 No csur 27578 <s cslt 27579 +s cadds 27902 -us cnegs 27961 -s csubs 27962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-norec2 27892 df-adds 27903 df-negs 27963 df-subs 27964 |
| This theorem is referenced by: sltsubsub3bd 28025 slesubsub3bd 28028 mulsproplem6 28060 mulsproplem7 28061 mulsproplem8 28062 |
| Copyright terms: Public domain | W3C validator |