MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltsubsubbd Structured version   Visualization version   GIF version

Theorem sltsubsubbd 27539
Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.)
Hypotheses
Ref Expression
sltsubsubbd.1 (𝜑𝐴 No )
sltsubsubbd.2 (𝜑𝐵 No )
sltsubsubbd.3 (𝜑𝐶 No )
sltsubsubbd.4 (𝜑𝐷 No )
Assertion
Ref Expression
sltsubsubbd (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷)))

Proof of Theorem sltsubsubbd
StepHypRef Expression
1 sltsubsubbd.1 . . . . 5 (𝜑𝐴 No )
2 sltsubsubbd.3 . . . . 5 (𝜑𝐶 No )
3 npcans 27531 . . . . 5 ((𝐴 No 𝐶 No ) → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴)
41, 2, 3syl2anc 584 . . . 4 (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = 𝐴)
5 sltsubsubbd.2 . . . . 5 (𝜑𝐵 No )
6 npcans 27531 . . . . 5 ((𝐴 No 𝐵 No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴)
71, 5, 6syl2anc 584 . . . 4 (𝜑 → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴)
84, 7eqtr4d 2775 . . 3 (𝜑 → ((𝐴 -s 𝐶) +s 𝐶) = ((𝐴 -s 𝐵) +s 𝐵))
95, 2addscomd 27440 . . . . 5 (𝜑 → (𝐵 +s 𝐶) = (𝐶 +s 𝐵))
109oveq1d 7420 . . . 4 (𝜑 → ((𝐵 +s 𝐶) +s ( -us𝐷)) = ((𝐶 +s 𝐵) +s ( -us𝐷)))
11 sltsubsubbd.4 . . . . . . 7 (𝜑𝐷 No )
125, 11subsvald 27522 . . . . . 6 (𝜑 → (𝐵 -s 𝐷) = (𝐵 +s ( -us𝐷)))
1312oveq1d 7420 . . . . 5 (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s ( -us𝐷)) +s 𝐶))
1411negscld 27500 . . . . . 6 (𝜑 → ( -us𝐷) ∈ No )
155, 14, 2adds32d 27479 . . . . 5 (𝜑 → ((𝐵 +s ( -us𝐷)) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us𝐷)))
1613, 15eqtrd 2772 . . . 4 (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐵 +s 𝐶) +s ( -us𝐷)))
172, 11subsvald 27522 . . . . . 6 (𝜑 → (𝐶 -s 𝐷) = (𝐶 +s ( -us𝐷)))
1817oveq1d 7420 . . . . 5 (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s ( -us𝐷)) +s 𝐵))
192, 14, 5adds32d 27479 . . . . 5 (𝜑 → ((𝐶 +s ( -us𝐷)) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us𝐷)))
2018, 19eqtrd 2772 . . . 4 (𝜑 → ((𝐶 -s 𝐷) +s 𝐵) = ((𝐶 +s 𝐵) +s ( -us𝐷)))
2110, 16, 203eqtr4d 2782 . . 3 (𝜑 → ((𝐵 -s 𝐷) +s 𝐶) = ((𝐶 -s 𝐷) +s 𝐵))
228, 21breq12d 5160 . 2 (𝜑 → (((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵)))
231, 2subscld 27524 . . 3 (𝜑 → (𝐴 -s 𝐶) ∈ No )
245, 11subscld 27524 . . 3 (𝜑 → (𝐵 -s 𝐷) ∈ No )
2523, 24, 2sltadd1d 27470 . 2 (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ ((𝐴 -s 𝐶) +s 𝐶) <s ((𝐵 -s 𝐷) +s 𝐶)))
261, 5subscld 27524 . . 3 (𝜑 → (𝐴 -s 𝐵) ∈ No )
272, 11subscld 27524 . . 3 (𝜑 → (𝐶 -s 𝐷) ∈ No )
2826, 27, 5sltadd1d 27470 . 2 (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ ((𝐴 -s 𝐵) +s 𝐵) <s ((𝐶 -s 𝐷) +s 𝐵)))
2922, 25, 283bitr4d 310 1 (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106   class class class wbr 5147  cfv 6540  (class class class)co 7405   No csur 27132   <s cslt 27133   +s cadds 27432   -us cnegs 27483   -s csubs 27484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-2o 8463  df-nadd 8661  df-no 27135  df-slt 27136  df-bday 27137  df-sle 27237  df-sslt 27272  df-scut 27274  df-0s 27314  df-made 27331  df-old 27332  df-left 27334  df-right 27335  df-norec 27411  df-norec2 27422  df-adds 27433  df-negs 27485  df-subs 27486
This theorem is referenced by:  sltsubsub3bd  27541  slesubsub3bd  27544  mulsproplem6  27566  mulsproplem7  27567  mulsproplem8  27568
  Copyright terms: Public domain W3C validator