MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd2 Structured version   Visualization version   GIF version

Theorem limsupbnd2 15027
Description: If a sequence is eventually greater than 𝐴, then the limsup is also greater than 𝐴. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupbnd.1 (𝜑𝐵 ⊆ ℝ)
limsupbnd.2 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd.3 (𝜑𝐴 ∈ ℝ*)
limsupbnd2.4 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
limsupbnd2.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)))
Assertion
Ref Expression
limsupbnd2 (𝜑𝐴 ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘

Proof of Theorem limsupbnd2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd2.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)))
2 limsupbnd2.4 . . . . . . . . 9 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
3 limsupbnd.1 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
4 ressxr 10860 . . . . . . . . . . 11 ℝ ⊆ ℝ*
53, 4sstrdi 3903 . . . . . . . . . 10 (𝜑𝐵 ⊆ ℝ*)
6 supxrunb1 12892 . . . . . . . . . 10 (𝐵 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ↔ sup(𝐵, ℝ*, < ) = +∞))
75, 6syl 17 . . . . . . . . 9 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ↔ sup(𝐵, ℝ*, < ) = +∞))
82, 7mpbird 260 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗)
9 ifcl 4474 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ)
10 breq1 5046 . . . . . . . . . 10 (𝑛 = if(𝑘𝑚, 𝑚, 𝑘) → (𝑛𝑗 ↔ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
1110rexbidv 3209 . . . . . . . . 9 (𝑛 = if(𝑘𝑚, 𝑚, 𝑘) → (∃𝑗𝐵 𝑛𝑗 ↔ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
1211rspccva 3529 . . . . . . . 8 ((∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ) → ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗)
138, 9, 12syl2an 599 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗)
14 r19.29 3169 . . . . . . . 8 ((∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → ∃𝑗𝐵 ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
15 simplrr 778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑘 ∈ ℝ)
16 simprl 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝑚 ∈ ℝ)
1716adantr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑚 ∈ ℝ)
18 max1 12758 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘))
1915, 17, 18syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘))
2017, 15, 9syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ)
213adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝐵 ⊆ ℝ)
2221sselda 3891 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
23 letr 10909 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑘𝑗))
2415, 20, 22, 23syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑘𝑗))
2519, 24mpand 695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝑘𝑗))
2625imim1d 82 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝐴 ≤ (𝐹𝑗))))
2726impd 414 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ (𝐹𝑗)))
28 max2 12760 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘))
2915, 17, 28syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘))
30 letr 10909 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
3117, 20, 22, 30syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
3229, 31mpand 695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝑚𝑗))
3332adantld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
34 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
3534limsupgf 15019 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
3635ffvelrni 6892 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℝ → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
3736adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
3837xrleidd 12725 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
3938adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
40 limsupbnd.2 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐵⟶ℝ*)
4140adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝐹:𝐵⟶ℝ*)
4216, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
4334limsupgle 15021 . . . . . . . . . . . . . . 15 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝑚 ∈ ℝ ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ↔ ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
4421, 41, 16, 42, 43syl211anc 1378 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ↔ ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
4539, 44mpbid 235 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4645r19.21bi 3123 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4733, 46syld 47 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4827, 47jcad 516 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → (𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
49 limsupbnd.3 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
5049ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝐴 ∈ ℝ*)
5141ffvelrnda 6893 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (𝐹𝑗) ∈ ℝ*)
5242adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
53 xrletr 12731 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐹𝑗) ∈ ℝ* ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*) → ((𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5450, 51, 52, 53syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5548, 54syld 47 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5655rexlimdva 3196 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (∃𝑗𝐵 ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5714, 56syl5 34 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5813, 57mpan2d 694 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5958anassrs 471 . . . . 5 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6059rexlimdva 3196 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6160ralrimdva 3103 . . 3 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
621, 61mpd 15 . 2 (𝜑 → ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
6334limsuple 15022 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
643, 40, 49, 63syl3anc 1373 . 2 (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6562, 64mpbird 260 1 (𝜑𝐴 ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3054  wrex 3055  cin 3856  wss 3857  ifcif 4429   class class class wbr 5043  cmpt 5124  cima 5543  wf 6365  cfv 6369  (class class class)co 7202  supcsup 9045  cr 10711  +∞cpnf 10847  *cxr 10849   < clt 10850  cle 10851  [,)cico 12920  lim supclsp 15014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-po 5457  df-so 5458  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-ico 12924  df-limsup 15015
This theorem is referenced by:  caucvgrlem  15219  limsupre  42811
  Copyright terms: Public domain W3C validator