MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd2 Structured version   Visualization version   GIF version

Theorem limsupbnd2 15408
Description: If a sequence is eventually greater than 𝐴, then the limsup is also greater than 𝐴. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupbnd.1 (𝜑𝐵 ⊆ ℝ)
limsupbnd.2 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd.3 (𝜑𝐴 ∈ ℝ*)
limsupbnd2.4 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
limsupbnd2.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)))
Assertion
Ref Expression
limsupbnd2 (𝜑𝐴 ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘

Proof of Theorem limsupbnd2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd2.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)))
2 limsupbnd2.4 . . . . . . . . 9 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
3 limsupbnd.1 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
4 ressxr 11178 . . . . . . . . . . 11 ℝ ⊆ ℝ*
53, 4sstrdi 3950 . . . . . . . . . 10 (𝜑𝐵 ⊆ ℝ*)
6 supxrunb1 13239 . . . . . . . . . 10 (𝐵 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ↔ sup(𝐵, ℝ*, < ) = +∞))
75, 6syl 17 . . . . . . . . 9 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ↔ sup(𝐵, ℝ*, < ) = +∞))
82, 7mpbird 257 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗)
9 ifcl 4524 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ)
10 breq1 5098 . . . . . . . . . 10 (𝑛 = if(𝑘𝑚, 𝑚, 𝑘) → (𝑛𝑗 ↔ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
1110rexbidv 3153 . . . . . . . . 9 (𝑛 = if(𝑘𝑚, 𝑚, 𝑘) → (∃𝑗𝐵 𝑛𝑗 ↔ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
1211rspccva 3578 . . . . . . . 8 ((∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ) → ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗)
138, 9, 12syl2an 596 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗)
14 r19.29 3092 . . . . . . . 8 ((∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → ∃𝑗𝐵 ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
15 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑘 ∈ ℝ)
16 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝑚 ∈ ℝ)
1716adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑚 ∈ ℝ)
18 max1 13105 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘))
1915, 17, 18syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘))
2017, 15, 9syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ)
213adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝐵 ⊆ ℝ)
2221sselda 3937 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
23 letr 11228 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑘𝑗))
2415, 20, 22, 23syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑘𝑗))
2519, 24mpand 695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝑘𝑗))
2625imim1d 82 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝐴 ≤ (𝐹𝑗))))
2726impd 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ (𝐹𝑗)))
28 max2 13107 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘))
2915, 17, 28syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘))
30 letr 11228 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
3117, 20, 22, 30syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
3229, 31mpand 695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝑚𝑗))
3332adantld 490 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
34 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
3534limsupgf 15400 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
3635ffvelcdmi 7021 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℝ → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
3736adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
3837xrleidd 13072 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
3938adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
40 limsupbnd.2 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐵⟶ℝ*)
4140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝐹:𝐵⟶ℝ*)
4216, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
4334limsupgle 15402 . . . . . . . . . . . . . . 15 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝑚 ∈ ℝ ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ↔ ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
4421, 41, 16, 42, 43syl211anc 1378 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ↔ ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
4539, 44mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4645r19.21bi 3221 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4733, 46syld 47 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4827, 47jcad 512 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → (𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
49 limsupbnd.3 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
5049ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝐴 ∈ ℝ*)
5141ffvelcdmda 7022 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (𝐹𝑗) ∈ ℝ*)
5242adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
53 xrletr 13078 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐹𝑗) ∈ ℝ* ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*) → ((𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5450, 51, 52, 53syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5548, 54syld 47 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5655rexlimdva 3130 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (∃𝑗𝐵 ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5714, 56syl5 34 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5813, 57mpan2d 694 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5958anassrs 467 . . . . 5 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6059rexlimdva 3130 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6160ralrimdva 3129 . . 3 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
621, 61mpd 15 . 2 (𝜑 → ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
6334limsuple 15403 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
643, 40, 49, 63syl3anc 1373 . 2 (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6562, 64mpbird 257 1 (𝜑𝐴 ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3904  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  [,)cico 13268  lim supclsp 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-ico 13272  df-limsup 15396
This theorem is referenced by:  caucvgrlem  15598  limsupre  45623
  Copyright terms: Public domain W3C validator