MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd2 Structured version   Visualization version   GIF version

Theorem limsupbnd2 15519
Description: If a sequence is eventually greater than 𝐴, then the limsup is also greater than 𝐴. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupbnd.1 (𝜑𝐵 ⊆ ℝ)
limsupbnd.2 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd.3 (𝜑𝐴 ∈ ℝ*)
limsupbnd2.4 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
limsupbnd2.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)))
Assertion
Ref Expression
limsupbnd2 (𝜑𝐴 ≤ (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘

Proof of Theorem limsupbnd2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd2.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)))
2 limsupbnd2.4 . . . . . . . . 9 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
3 limsupbnd.1 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
4 ressxr 11305 . . . . . . . . . . 11 ℝ ⊆ ℝ*
53, 4sstrdi 3996 . . . . . . . . . 10 (𝜑𝐵 ⊆ ℝ*)
6 supxrunb1 13361 . . . . . . . . . 10 (𝐵 ⊆ ℝ* → (∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ↔ sup(𝐵, ℝ*, < ) = +∞))
75, 6syl 17 . . . . . . . . 9 (𝜑 → (∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ↔ sup(𝐵, ℝ*, < ) = +∞))
82, 7mpbird 257 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗)
9 ifcl 4571 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ)
10 breq1 5146 . . . . . . . . . 10 (𝑛 = if(𝑘𝑚, 𝑚, 𝑘) → (𝑛𝑗 ↔ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
1110rexbidv 3179 . . . . . . . . 9 (𝑛 = if(𝑘𝑚, 𝑚, 𝑘) → (∃𝑗𝐵 𝑛𝑗 ↔ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
1211rspccva 3621 . . . . . . . 8 ((∀𝑛 ∈ ℝ ∃𝑗𝐵 𝑛𝑗 ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ) → ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗)
138, 9, 12syl2an 596 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗)
14 r19.29 3114 . . . . . . . 8 ((∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → ∃𝑗𝐵 ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗))
15 simplrr 778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑘 ∈ ℝ)
16 simprl 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝑚 ∈ ℝ)
1716adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑚 ∈ ℝ)
18 max1 13227 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘))
1915, 17, 18syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘))
2017, 15, 9syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ)
213adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝐵 ⊆ ℝ)
2221sselda 3983 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
23 letr 11355 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑘𝑗))
2415, 20, 22, 23syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑘 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑘𝑗))
2519, 24mpand 695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝑘𝑗))
2625imim1d 82 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝐴 ≤ (𝐹𝑗))))
2726impd 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ (𝐹𝑗)))
28 max2 13229 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘))
2915, 17, 28syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘))
30 letr 11355 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ if(𝑘𝑚, 𝑚, 𝑘) ∈ ℝ ∧ 𝑗 ∈ ℝ) → ((𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
3117, 20, 22, 30syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑚 ≤ if(𝑘𝑚, 𝑚, 𝑘) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
3229, 31mpand 695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗𝑚𝑗))
3332adantld 490 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝑚𝑗))
34 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
3534limsupgf 15511 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
3635ffvelcdmi 7103 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℝ → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
3736adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
3837xrleidd 13194 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
3938adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
40 limsupbnd.2 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐵⟶ℝ*)
4140adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → 𝐹:𝐵⟶ℝ*)
4216, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
4334limsupgle 15513 . . . . . . . . . . . . . . 15 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝑚 ∈ ℝ ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ↔ ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
4421, 41, 16, 42, 43syl211anc 1378 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ↔ ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
4539, 44mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ∀𝑗𝐵 (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4645r19.21bi 3251 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (𝑚𝑗 → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4733, 46syld 47 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
4827, 47jcad 512 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → (𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))))
49 limsupbnd.3 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
5049ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → 𝐴 ∈ ℝ*)
5141ffvelcdmda 7104 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (𝐹𝑗) ∈ ℝ*)
5242adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*)
53 xrletr 13200 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐹𝑗) ∈ ℝ* ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚) ∈ ℝ*) → ((𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5450, 51, 52, 53syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → ((𝐴 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5548, 54syld 47 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) ∧ 𝑗𝐵) → (((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5655rexlimdva 3155 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (∃𝑗𝐵 ((𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5714, 56syl5 34 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → ((∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) ∧ ∃𝑗𝐵 if(𝑘𝑚, 𝑚, 𝑘) ≤ 𝑗) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5813, 57mpan2d 694 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
5958anassrs 467 . . . . 5 (((𝜑𝑚 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6059rexlimdva 3155 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6160ralrimdva 3154 . . 3 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)) → ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
621, 61mpd 15 . 2 (𝜑 → ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚))
6334limsuple 15514 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
643, 40, 49, 63syl3anc 1373 . 2 (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑚 ∈ ℝ 𝐴 ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑚)))
6562, 64mpbird 257 1 (𝜑𝐴 ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cin 3950  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389  lim supclsp 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-ico 13393  df-limsup 15507
This theorem is referenced by:  caucvgrlem  15709  limsupre  45656
  Copyright terms: Public domain W3C validator