MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumharmonic Structured version   Visualization version   GIF version

Theorem fsumharmonic 26361
Description: Bound a finite sum based on the harmonic series, where the "strong" bound 𝐶 only applies asymptotically, and there is a "weak" bound 𝑅 for the remaining values. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
fsumharmonic.a (𝜑𝐴 ∈ ℝ+)
fsumharmonic.t (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇))
fsumharmonic.r (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
fsumharmonic.b ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
fsumharmonic.c ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ)
fsumharmonic.0 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶)
fsumharmonic.1 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛))
fsumharmonic.2 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅)
Assertion
Ref Expression
fsumharmonic (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1))))
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛   𝑅,𝑛   𝑇,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝐶(𝑛)

Proof of Theorem fsumharmonic
StepHypRef Expression
1 fzfid 13878 . . . 4 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 fsumharmonic.b . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
3 elfznn 13470 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 482 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
54nncnd 12169 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
64nnne0d 12203 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0)
72, 5, 6divcld 11931 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝐵 / 𝑛) ∈ ℂ)
81, 7fsumcl 15618 . . 3 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛) ∈ ℂ)
98abscld 15321 . 2 (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ∈ ℝ)
102abscld 15321 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘𝐵) ∈ ℝ)
1110, 4nndivred 12207 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℝ)
121, 11fsumrecl 15619 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ∈ ℝ)
13 fsumharmonic.c . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ)
141, 13fsumrecl 15619 . . 3 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 ∈ ℝ)
15 fsumharmonic.r . . . . 5 (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
1615simpld 495 . . . 4 (𝜑𝑅 ∈ ℝ)
17 fsumharmonic.t . . . . . . . 8 (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇))
1817simpld 495 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
19 0red 11158 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
20 1red 11156 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
21 0lt1 11677 . . . . . . . . 9 0 < 1
2221a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
2317simprd 496 . . . . . . . 8 (𝜑 → 1 ≤ 𝑇)
2419, 20, 18, 22, 23ltletrd 11315 . . . . . . 7 (𝜑 → 0 < 𝑇)
2518, 24elrpd 12954 . . . . . 6 (𝜑𝑇 ∈ ℝ+)
2625relogcld 25978 . . . . 5 (𝜑 → (log‘𝑇) ∈ ℝ)
2726, 20readdcld 11184 . . . 4 (𝜑 → ((log‘𝑇) + 1) ∈ ℝ)
2816, 27remulcld 11185 . . 3 (𝜑 → (𝑅 · ((log‘𝑇) + 1)) ∈ ℝ)
2914, 28readdcld 11184 . 2 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1))) ∈ ℝ)
301, 7fsumabs 15686 . . 3 (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))(abs‘(𝐵 / 𝑛)))
312, 5, 6absdivd 15340 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘(𝐵 / 𝑛)) = ((abs‘𝐵) / (abs‘𝑛)))
324nnrpd 12955 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
3332rprege0d 12964 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
34 absid 15181 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
3533, 34syl 17 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘𝑛) = 𝑛)
3635oveq2d 7373 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / (abs‘𝑛)) = ((abs‘𝐵) / 𝑛))
3731, 36eqtrd 2776 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘(𝐵 / 𝑛)) = ((abs‘𝐵) / 𝑛))
3837sumeq2dv 15588 . . 3 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(abs‘(𝐵 / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛))
3930, 38breqtrd 5131 . 2 (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛))
40 fsumharmonic.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
4140, 25rpdivcld 12974 . . . . . . . . 9 (𝜑 → (𝐴 / 𝑇) ∈ ℝ+)
4241rprege0d 12964 . . . . . . . 8 (𝜑 → ((𝐴 / 𝑇) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑇)))
43 flge0nn0 13725 . . . . . . . 8 (((𝐴 / 𝑇) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑇)) → (⌊‘(𝐴 / 𝑇)) ∈ ℕ0)
4442, 43syl 17 . . . . . . 7 (𝜑 → (⌊‘(𝐴 / 𝑇)) ∈ ℕ0)
4544nn0red 12474 . . . . . 6 (𝜑 → (⌊‘(𝐴 / 𝑇)) ∈ ℝ)
4645ltp1d 12085 . . . . 5 (𝜑 → (⌊‘(𝐴 / 𝑇)) < ((⌊‘(𝐴 / 𝑇)) + 1))
47 fzdisj 13468 . . . . 5 ((⌊‘(𝐴 / 𝑇)) < ((⌊‘(𝐴 / 𝑇)) + 1) → ((1...(⌊‘(𝐴 / 𝑇))) ∩ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) = ∅)
4846, 47syl 17 . . . 4 (𝜑 → ((1...(⌊‘(𝐴 / 𝑇))) ∩ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) = ∅)
49 nn0p1nn 12452 . . . . . . 7 ((⌊‘(𝐴 / 𝑇)) ∈ ℕ0 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈ ℕ)
5044, 49syl 17 . . . . . 6 (𝜑 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈ ℕ)
51 nnuz 12806 . . . . . 6 ℕ = (ℤ‘1)
5250, 51eleqtrdi 2848 . . . . 5 (𝜑 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈ (ℤ‘1))
5341rpred 12957 . . . . . 6 (𝜑 → (𝐴 / 𝑇) ∈ ℝ)
5440rpred 12957 . . . . . 6 (𝜑𝐴 ∈ ℝ)
5518, 24jca 512 . . . . . . . . 9 (𝜑 → (𝑇 ∈ ℝ ∧ 0 < 𝑇))
5640rpregt0d 12963 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
57 lediv2 12045 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝑇 ↔ (𝐴 / 𝑇) ≤ (𝐴 / 1)))
5820, 22, 55, 56, 57syl211anc 1376 . . . . . . . 8 (𝜑 → (1 ≤ 𝑇 ↔ (𝐴 / 𝑇) ≤ (𝐴 / 1)))
5923, 58mpbid 231 . . . . . . 7 (𝜑 → (𝐴 / 𝑇) ≤ (𝐴 / 1))
6054recnd 11183 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
6160div1d 11923 . . . . . . 7 (𝜑 → (𝐴 / 1) = 𝐴)
6259, 61breqtrd 5131 . . . . . 6 (𝜑 → (𝐴 / 𝑇) ≤ 𝐴)
63 flword2 13718 . . . . . 6 (((𝐴 / 𝑇) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 / 𝑇) ≤ 𝐴) → (⌊‘𝐴) ∈ (ℤ‘(⌊‘(𝐴 / 𝑇))))
6453, 54, 62, 63syl3anc 1371 . . . . 5 (𝜑 → (⌊‘𝐴) ∈ (ℤ‘(⌊‘(𝐴 / 𝑇))))
65 fzsplit2 13466 . . . . 5 ((((⌊‘(𝐴 / 𝑇)) + 1) ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ‘(⌊‘(𝐴 / 𝑇)))) → (1...(⌊‘𝐴)) = ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))))
6652, 64, 65syl2anc 584 . . . 4 (𝜑 → (1...(⌊‘𝐴)) = ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))))
6711recnd 11183 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℂ)
6848, 66, 1, 67fsumsplit 15626 . . 3 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛)))
69 fzfid 13878 . . . . 5 (𝜑 → (1...(⌊‘(𝐴 / 𝑇))) ∈ Fin)
70 ssun1 4132 . . . . . . . 8 (1...(⌊‘(𝐴 / 𝑇))) ⊆ ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))
7170, 66sseqtrrid 3997 . . . . . . 7 (𝜑 → (1...(⌊‘(𝐴 / 𝑇))) ⊆ (1...(⌊‘𝐴)))
7271sselda 3944 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ (1...(⌊‘𝐴)))
7372, 11syldan 591 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → ((abs‘𝐵) / 𝑛) ∈ ℝ)
7469, 73fsumrecl 15619 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ∈ ℝ)
75 fzfid 13878 . . . . 5 (𝜑 → (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) ∈ Fin)
76 ssun2 4133 . . . . . . . 8 (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) ⊆ ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))
7776, 66sseqtrrid 3997 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
7877sselda 3944 . . . . . 6 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ (1...(⌊‘𝐴)))
7978, 11syldan 591 . . . . 5 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℝ)
8075, 79fsumrecl 15619 . . . 4 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ∈ ℝ)
8172, 13syldan 591 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝐶 ∈ ℝ)
8269, 81fsumrecl 15619 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶 ∈ ℝ)
83 fznnfl 13767 . . . . . . . . . . 11 ((𝐴 / 𝑇) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑇))))
8453, 83syl 17 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑇))))
8584simplbda 500 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ≤ (𝐴 / 𝑇))
8632rpred 12957 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ)
8754adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
8855adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑇 ∈ ℝ ∧ 0 < 𝑇))
89 lemuldiv2 12036 . . . . . . . . . . . 12 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇)) → ((𝑇 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑇)))
9086, 87, 88, 89syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑇 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑇)))
9118adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑇 ∈ ℝ)
9291, 87, 32lemuldivd 13006 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑇 · 𝑛) ≤ 𝐴𝑇 ≤ (𝐴 / 𝑛)))
9390, 92bitr3d 280 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ≤ (𝐴 / 𝑇) ↔ 𝑇 ≤ (𝐴 / 𝑛)))
9472, 93syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (𝑛 ≤ (𝐴 / 𝑇) ↔ 𝑇 ≤ (𝐴 / 𝑛)))
9585, 94mpbid 231 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑇 ≤ (𝐴 / 𝑛))
96 fsumharmonic.1 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛))
9796ex 413 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑇 ≤ (𝐴 / 𝑛) → (abs‘𝐵) ≤ (𝐶 · 𝑛)))
9872, 97syldan 591 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (𝑇 ≤ (𝐴 / 𝑛) → (abs‘𝐵) ≤ (𝐶 · 𝑛)))
9995, 98mpd 15 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (abs‘𝐵) ≤ (𝐶 · 𝑛))
10072, 2syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝐵 ∈ ℂ)
101100abscld 15321 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (abs‘𝐵) ∈ ℝ)
10272, 3syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℕ)
103102nnrpd 12955 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℝ+)
104101, 81, 103ledivmul2d 13011 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (((abs‘𝐵) / 𝑛) ≤ 𝐶 ↔ (abs‘𝐵) ≤ (𝐶 · 𝑛)))
10599, 104mpbird 256 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → ((abs‘𝐵) / 𝑛) ≤ 𝐶)
10669, 73, 81, 105fsumle 15684 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶)
107 fsumharmonic.0 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶)
1081, 13, 107, 71fsumless 15681 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶 ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶)
10974, 82, 14, 106, 108letrd 11312 . . . 4 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶)
11078, 3syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
111110nnrecred 12204 . . . . . . 7 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℝ)
11275, 111fsumrecl 15619 . . . . . 6 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ)
11316, 112remulcld 11185 . . . . 5 (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ∈ ℝ)
11416adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑅 ∈ ℝ)
115114recnd 11183 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑅 ∈ ℂ)
116110nncnd 12169 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
117110nnne0d 12203 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ≠ 0)
118115, 116, 117divrecd 11934 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 / 𝑛) = (𝑅 · (1 / 𝑛)))
119114, 110nndivred 12207 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 / 𝑛) ∈ ℝ)
120118, 119eqeltrrd 2839 . . . . . . 7 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 · (1 / 𝑛)) ∈ ℝ)
12178, 10syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (abs‘𝐵) ∈ ℝ)
12278, 32syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
123 noel 4290 . . . . . . . . . . . . . . . 16 ¬ 𝑛 ∈ ∅
124 elin 3926 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ((1...(⌊‘(𝐴 / 𝑇))) ∩ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))))
12548eleq2d 2823 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 ∈ ((1...(⌊‘(𝐴 / 𝑇))) ∩ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ 𝑛 ∈ ∅))
126124, 125bitr3id 284 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ 𝑛 ∈ ∅))
127123, 126mtbiri 326 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))))
128 imnan 400 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) → ¬ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ ¬ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))))
129127, 128sylibr 233 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) → ¬ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))))
130129con2d 134 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) → ¬ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))))
131130imp 407 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ¬ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))))
13283baibd 540 . . . . . . . . . . . . . . 15 (((𝐴 / 𝑇) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑛 ≤ (𝐴 / 𝑇)))
13353, 3, 132syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑛 ≤ (𝐴 / 𝑇)))
134133, 93bitrd 278 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑇 ≤ (𝐴 / 𝑛)))
13578, 134syldan 591 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑇 ≤ (𝐴 / 𝑛)))
136131, 135mtbid 323 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ¬ 𝑇 ≤ (𝐴 / 𝑛))
13754adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
138137, 110nndivred 12207 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ)
13918adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑇 ∈ ℝ)
140138, 139ltnled 11302 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 ↔ ¬ 𝑇 ≤ (𝐴 / 𝑛)))
141136, 140mpbird 256 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝐴 / 𝑛) < 𝑇)
142 fsumharmonic.2 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅)
143142ex 413 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 → (abs‘𝐵) ≤ 𝑅))
14478, 143syldan 591 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 → (abs‘𝐵) ≤ 𝑅))
145141, 144mpd 15 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (abs‘𝐵) ≤ 𝑅)
146121, 114, 122, 145lediv1dd 13015 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ≤ (𝑅 / 𝑛))
147146, 118breqtrd 5131 . . . . . . 7 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ≤ (𝑅 · (1 / 𝑛)))
14875, 79, 120, 147fsumle 15684 . . . . . 6 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(𝑅 · (1 / 𝑛)))
14916recnd 11183 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
150111recnd 11183 . . . . . . 7 ((𝜑𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℂ)
15175, 149, 150fsummulc2 15669 . . . . . 6 (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(𝑅 · (1 / 𝑛)))
152148, 151breqtrrd 5133 . . . . 5 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)))
153102nnrecred 12204 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈ ℝ)
15469, 153fsumrecl 15619 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℝ)
155154recnd 11183 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℂ)
156112recnd 11183 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℂ)
1574nnrecred 12204 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℝ)
158157recnd 11183 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℂ)
15948, 66, 1, 158fsumsplit 15626 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)))
160155, 156, 159mvrladdd 11568 . . . . . . 7 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛))
1611, 157fsumrecl 15619 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ)
162161adantr 481 . . . . . . . . . 10 ((𝜑𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ)
163154adantr 481 . . . . . . . . . 10 ((𝜑𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℝ)
164162, 163resubcld 11583 . . . . . . . . 9 ((𝜑𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ∈ ℝ)
165 0red 11158 . . . . . . . . 9 ((𝜑𝐴 < 1) → 0 ∈ ℝ)
16627adantr 481 . . . . . . . . 9 ((𝜑𝐴 < 1) → ((log‘𝑇) + 1) ∈ ℝ)
167 fzfid 13878 . . . . . . . . . . 11 ((𝜑𝐴 < 1) → (1...(⌊‘(𝐴 / 𝑇))) ∈ Fin)
168103adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℝ+)
169168rpreccld 12967 . . . . . . . . . . . 12 (((𝜑𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈ ℝ+)
170169rpred 12957 . . . . . . . . . . 11 (((𝜑𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈ ℝ)
171169rpge0d 12961 . . . . . . . . . . 11 (((𝜑𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 0 ≤ (1 / 𝑛))
17240adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 < 1) → 𝐴 ∈ ℝ+)
173172rpge0d 12961 . . . . . . . . . . . . . . 15 ((𝜑𝐴 < 1) → 0 ≤ 𝐴)
174 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 < 1) → 𝐴 < 1)
175 0p1e1 12275 . . . . . . . . . . . . . . . 16 (0 + 1) = 1
176174, 175breqtrrdi 5147 . . . . . . . . . . . . . . 15 ((𝜑𝐴 < 1) → 𝐴 < (0 + 1))
17754adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 < 1) → 𝐴 ∈ ℝ)
178 0z 12510 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
179 flbi 13721 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴𝐴 < (0 + 1))))
180177, 178, 179sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝐴 < 1) → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴𝐴 < (0 + 1))))
181173, 176, 180mpbir2and 711 . . . . . . . . . . . . . 14 ((𝜑𝐴 < 1) → (⌊‘𝐴) = 0)
182181oveq2d 7373 . . . . . . . . . . . . 13 ((𝜑𝐴 < 1) → (1...(⌊‘𝐴)) = (1...0))
183 fz10 13462 . . . . . . . . . . . . 13 (1...0) = ∅
184182, 183eqtrdi 2792 . . . . . . . . . . . 12 ((𝜑𝐴 < 1) → (1...(⌊‘𝐴)) = ∅)
185 0ss 4356 . . . . . . . . . . . 12 ∅ ⊆ (1...(⌊‘(𝐴 / 𝑇)))
186184, 185eqsstrdi 3998 . . . . . . . . . . 11 ((𝜑𝐴 < 1) → (1...(⌊‘𝐴)) ⊆ (1...(⌊‘(𝐴 / 𝑇))))
187167, 170, 171, 186fsumless 15681 . . . . . . . . . 10 ((𝜑𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛))
188162, 163suble0d 11746 . . . . . . . . . 10 ((𝜑𝐴 < 1) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ 0 ↔ Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)))
189187, 188mpbird 256 . . . . . . . . 9 ((𝜑𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ 0)
19018, 23logge0d 25985 . . . . . . . . . . 11 (𝜑 → 0 ≤ (log‘𝑇))
191 0le1 11678 . . . . . . . . . . . 12 0 ≤ 1
192191a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ≤ 1)
19326, 20, 190, 192addge0d 11731 . . . . . . . . . 10 (𝜑 → 0 ≤ ((log‘𝑇) + 1))
194193adantr 481 . . . . . . . . 9 ((𝜑𝐴 < 1) → 0 ≤ ((log‘𝑇) + 1))
195164, 165, 166, 189, 194letrd 11312 . . . . . . . 8 ((𝜑𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1))
196 harmonicubnd 26359 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1))
19754, 196sylan 580 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1))
198 harmoniclbnd 26358 . . . . . . . . . . . 12 ((𝐴 / 𝑇) ∈ ℝ+ → (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛))
19941, 198syl 17 . . . . . . . . . . 11 (𝜑 → (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛))
200199adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐴) → (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛))
20140relogcld 25978 . . . . . . . . . . . . 13 (𝜑 → (log‘𝐴) ∈ ℝ)
202 peano2re 11328 . . . . . . . . . . . . 13 ((log‘𝐴) ∈ ℝ → ((log‘𝐴) + 1) ∈ ℝ)
203201, 202syl 17 . . . . . . . . . . . 12 (𝜑 → ((log‘𝐴) + 1) ∈ ℝ)
20441relogcld 25978 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐴 / 𝑇)) ∈ ℝ)
205 le2sub 11654 . . . . . . . . . . . 12 (((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℝ) ∧ (((log‘𝐴) + 1) ∈ ℝ ∧ (log‘(𝐴 / 𝑇)) ∈ ℝ)) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇)))))
206161, 154, 203, 204, 205syl22anc 837 . . . . . . . . . . 11 (𝜑 → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇)))))
207206adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐴) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇)))))
208197, 200, 207mp2and 697 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))))
209201recnd 11183 . . . . . . . . . . . 12 (𝜑 → (log‘𝐴) ∈ ℂ)
21020recnd 11183 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
21126recnd 11183 . . . . . . . . . . . 12 (𝜑 → (log‘𝑇) ∈ ℂ)
212209, 210, 211pnncand 11551 . . . . . . . . . . 11 (𝜑 → (((log‘𝐴) + 1) − ((log‘𝐴) − (log‘𝑇))) = (1 + (log‘𝑇)))
21340, 25relogdivd 25981 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐴 / 𝑇)) = ((log‘𝐴) − (log‘𝑇)))
214213oveq2d 7373 . . . . . . . . . . 11 (𝜑 → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = (((log‘𝐴) + 1) − ((log‘𝐴) − (log‘𝑇))))
215 ax-1cn 11109 . . . . . . . . . . . 12 1 ∈ ℂ
216 addcom 11341 . . . . . . . . . . . 12 (((log‘𝑇) ∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑇) + 1) = (1 + (log‘𝑇)))
217211, 215, 216sylancl 586 . . . . . . . . . . 11 (𝜑 → ((log‘𝑇) + 1) = (1 + (log‘𝑇)))
218212, 214, 2173eqtr4d 2786 . . . . . . . . . 10 (𝜑 → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = ((log‘𝑇) + 1))
219218adantr 481 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐴) → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = ((log‘𝑇) + 1))
220208, 219breqtrd 5131 . . . . . . . 8 ((𝜑 ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1))
221195, 220, 54, 20ltlecasei 11263 . . . . . . 7 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1))
222160, 221eqbrtrrd 5129 . . . . . 6 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝑇) + 1))
223 lemul2a 12010 . . . . . 6 (((Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ ∧ ((log‘𝑇) + 1) ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) ∧ Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝑇) + 1)) → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ≤ (𝑅 · ((log‘𝑇) + 1)))
224112, 27, 15, 222, 223syl31anc 1373 . . . . 5 (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ≤ (𝑅 · ((log‘𝑇) + 1)))
22580, 113, 28, 152, 224letrd 11312 . . . 4 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (𝑅 · ((log‘𝑇) + 1)))
22674, 80, 14, 28, 109, 225le2addd 11774 . . 3 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1))))
22768, 226eqbrtrd 5127 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1))))
2289, 12, 29, 39, 227letrd 11312 1 (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cun 3908  cin 3909  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  cfl 13695  abscabs 15119  Σcsu 15570  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-atan 26217  df-em 26342
This theorem is referenced by:  dchrvmasumlem2  26846  mulog2sumlem2  26883
  Copyright terms: Public domain W3C validator