Proof of Theorem fsumharmonic
| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 13996 |
. . . 4
⊢ (𝜑 → (1...(⌊‘𝐴)) ∈ Fin) |
| 2 | | fsumharmonic.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ) |
| 3 | | elfznn 13575 |
. . . . . . 7
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) |
| 4 | 3 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ) |
| 5 | 4 | nncnd 12261 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ) |
| 6 | 4 | nnne0d 12295 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0) |
| 7 | 2, 5, 6 | divcld 12022 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝐵 / 𝑛) ∈ ℂ) |
| 8 | 1, 7 | fsumcl 15754 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛) ∈ ℂ) |
| 9 | 8 | abscld 15460 |
. 2
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ∈ ℝ) |
| 10 | 2 | abscld 15460 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘𝐵) ∈ ℝ) |
| 11 | 10, 4 | nndivred 12299 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℝ) |
| 12 | 1, 11 | fsumrecl 15755 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ∈ ℝ) |
| 13 | | fsumharmonic.c |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ) |
| 14 | 1, 13 | fsumrecl 15755 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 ∈ ℝ) |
| 15 | | fsumharmonic.r |
. . . . 5
⊢ (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) |
| 16 | 15 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 17 | | fsumharmonic.t |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇)) |
| 18 | 17 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 19 | | 0red 11243 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
| 20 | | 1red 11241 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 21 | | 0lt1 11764 |
. . . . . . . . 9
⊢ 0 <
1 |
| 22 | 21 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 < 1) |
| 23 | 17 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑇) |
| 24 | 19, 20, 18, 22, 23 | ltletrd 11400 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝑇) |
| 25 | 18, 24 | elrpd 13053 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
| 26 | 25 | relogcld 26589 |
. . . . 5
⊢ (𝜑 → (log‘𝑇) ∈
ℝ) |
| 27 | 26, 20 | readdcld 11269 |
. . . 4
⊢ (𝜑 → ((log‘𝑇) + 1) ∈
ℝ) |
| 28 | 16, 27 | remulcld 11270 |
. . 3
⊢ (𝜑 → (𝑅 · ((log‘𝑇) + 1)) ∈ ℝ) |
| 29 | 14, 28 | readdcld 11269 |
. 2
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1))) ∈ ℝ) |
| 30 | 1, 7 | fsumabs 15822 |
. . 3
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))(abs‘(𝐵 / 𝑛))) |
| 31 | 2, 5, 6 | absdivd 15479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘(𝐵 / 𝑛)) = ((abs‘𝐵) / (abs‘𝑛))) |
| 32 | 4 | nnrpd 13054 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+) |
| 33 | 32 | rprege0d 13063 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) |
| 34 | | absid 15320 |
. . . . . . 7
⊢ ((𝑛 ∈ ℝ ∧ 0 ≤
𝑛) → (abs‘𝑛) = 𝑛) |
| 35 | 33, 34 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘𝑛) = 𝑛) |
| 36 | 35 | oveq2d 7426 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / (abs‘𝑛)) = ((abs‘𝐵) / 𝑛)) |
| 37 | 31, 36 | eqtrd 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘(𝐵 / 𝑛)) = ((abs‘𝐵) / 𝑛)) |
| 38 | 37 | sumeq2dv 15723 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(abs‘(𝐵 / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛)) |
| 39 | 30, 38 | breqtrd 5150 |
. 2
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛)) |
| 40 | | fsumharmonic.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 41 | 40, 25 | rpdivcld 13073 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 / 𝑇) ∈
ℝ+) |
| 42 | 41 | rprege0d 13063 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 / 𝑇) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑇))) |
| 43 | | flge0nn0 13842 |
. . . . . . . 8
⊢ (((𝐴 / 𝑇) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑇)) → (⌊‘(𝐴 / 𝑇)) ∈
ℕ0) |
| 44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝐴 / 𝑇)) ∈
ℕ0) |
| 45 | 44 | nn0red 12568 |
. . . . . 6
⊢ (𝜑 → (⌊‘(𝐴 / 𝑇)) ∈ ℝ) |
| 46 | 45 | ltp1d 12177 |
. . . . 5
⊢ (𝜑 → (⌊‘(𝐴 / 𝑇)) < ((⌊‘(𝐴 / 𝑇)) + 1)) |
| 47 | | fzdisj 13573 |
. . . . 5
⊢
((⌊‘(𝐴 /
𝑇)) <
((⌊‘(𝐴 / 𝑇)) + 1) →
((1...(⌊‘(𝐴 /
𝑇))) ∩
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) = ∅) |
| 48 | 46, 47 | syl 17 |
. . . 4
⊢ (𝜑 →
((1...(⌊‘(𝐴 /
𝑇))) ∩
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) = ∅) |
| 49 | | nn0p1nn 12545 |
. . . . . . 7
⊢
((⌊‘(𝐴 /
𝑇)) ∈
ℕ0 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈ ℕ) |
| 50 | 44, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈ ℕ) |
| 51 | | nnuz 12900 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
| 52 | 50, 51 | eleqtrdi 2845 |
. . . . 5
⊢ (𝜑 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈
(ℤ≥‘1)) |
| 53 | 41 | rpred 13056 |
. . . . . 6
⊢ (𝜑 → (𝐴 / 𝑇) ∈ ℝ) |
| 54 | 40 | rpred 13056 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 55 | 18, 24 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 0 < 𝑇)) |
| 56 | 40 | rpregt0d 13062 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| 57 | | lediv2 12137 |
. . . . . . . . 9
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝑇 ↔ (𝐴 / 𝑇) ≤ (𝐴 / 1))) |
| 58 | 20, 22, 55, 56, 57 | syl211anc 1378 |
. . . . . . . 8
⊢ (𝜑 → (1 ≤ 𝑇 ↔ (𝐴 / 𝑇) ≤ (𝐴 / 1))) |
| 59 | 23, 58 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝐴 / 𝑇) ≤ (𝐴 / 1)) |
| 60 | 54 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 61 | 60 | div1d 12014 |
. . . . . . 7
⊢ (𝜑 → (𝐴 / 1) = 𝐴) |
| 62 | 59, 61 | breqtrd 5150 |
. . . . . 6
⊢ (𝜑 → (𝐴 / 𝑇) ≤ 𝐴) |
| 63 | | flword2 13835 |
. . . . . 6
⊢ (((𝐴 / 𝑇) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 / 𝑇) ≤ 𝐴) → (⌊‘𝐴) ∈
(ℤ≥‘(⌊‘(𝐴 / 𝑇)))) |
| 64 | 53, 54, 62, 63 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (⌊‘𝐴) ∈
(ℤ≥‘(⌊‘(𝐴 / 𝑇)))) |
| 65 | | fzsplit2 13571 |
. . . . 5
⊢
((((⌊‘(𝐴
/ 𝑇)) + 1) ∈
(ℤ≥‘1) ∧ (⌊‘𝐴) ∈
(ℤ≥‘(⌊‘(𝐴 / 𝑇)))) → (1...(⌊‘𝐴)) = ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) |
| 66 | 52, 64, 65 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (1...(⌊‘𝐴)) = ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) |
| 67 | 11 | recnd 11268 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℂ) |
| 68 | 48, 66, 1, 67 | fsumsplit 15762 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛))) |
| 69 | | fzfid 13996 |
. . . . 5
⊢ (𝜑 → (1...(⌊‘(𝐴 / 𝑇))) ∈ Fin) |
| 70 | | ssun1 4158 |
. . . . . . . 8
⊢
(1...(⌊‘(𝐴 / 𝑇))) ⊆ ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) |
| 71 | 70, 66 | sseqtrrid 4007 |
. . . . . . 7
⊢ (𝜑 → (1...(⌊‘(𝐴 / 𝑇))) ⊆ (1...(⌊‘𝐴))) |
| 72 | 71 | sselda 3963 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ (1...(⌊‘𝐴))) |
| 73 | 72, 11 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → ((abs‘𝐵) / 𝑛) ∈ ℝ) |
| 74 | 69, 73 | fsumrecl 15755 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ∈ ℝ) |
| 75 | | fzfid 13996 |
. . . . 5
⊢ (𝜑 → (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) ∈ Fin) |
| 76 | | ssun2 4159 |
. . . . . . . 8
⊢
(((⌊‘(𝐴
/ 𝑇)) +
1)...(⌊‘𝐴))
⊆ ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) |
| 77 | 76, 66 | sseqtrrid 4007 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴))) |
| 78 | 77 | sselda 3963 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ (1...(⌊‘𝐴))) |
| 79 | 78, 11 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℝ) |
| 80 | 75, 79 | fsumrecl 15755 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ∈ ℝ) |
| 81 | 72, 13 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝐶 ∈ ℝ) |
| 82 | 69, 81 | fsumrecl 15755 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶 ∈ ℝ) |
| 83 | | fznnfl 13884 |
. . . . . . . . . . 11
⊢ ((𝐴 / 𝑇) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑇)))) |
| 84 | 53, 83 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑇)))) |
| 85 | 84 | simplbda 499 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ≤ (𝐴 / 𝑇)) |
| 86 | 32 | rpred 13056 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ) |
| 87 | 54 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ) |
| 88 | 55 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑇 ∈ ℝ ∧ 0 < 𝑇)) |
| 89 | | lemuldiv2 12128 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 <
𝑇)) → ((𝑇 · 𝑛) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑇))) |
| 90 | 86, 87, 88, 89 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑇 · 𝑛) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑇))) |
| 91 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑇 ∈ ℝ) |
| 92 | 91, 87, 32 | lemuldivd 13105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑇 · 𝑛) ≤ 𝐴 ↔ 𝑇 ≤ (𝐴 / 𝑛))) |
| 93 | 90, 92 | bitr3d 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ≤ (𝐴 / 𝑇) ↔ 𝑇 ≤ (𝐴 / 𝑛))) |
| 94 | 72, 93 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (𝑛 ≤ (𝐴 / 𝑇) ↔ 𝑇 ≤ (𝐴 / 𝑛))) |
| 95 | 85, 94 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑇 ≤ (𝐴 / 𝑛)) |
| 96 | | fsumharmonic.1 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) |
| 97 | 96 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑇 ≤ (𝐴 / 𝑛) → (abs‘𝐵) ≤ (𝐶 · 𝑛))) |
| 98 | 72, 97 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (𝑇 ≤ (𝐴 / 𝑛) → (abs‘𝐵) ≤ (𝐶 · 𝑛))) |
| 99 | 95, 98 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) |
| 100 | 72, 2 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝐵 ∈ ℂ) |
| 101 | 100 | abscld 15460 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (abs‘𝐵) ∈ ℝ) |
| 102 | 72, 3 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℕ) |
| 103 | 102 | nnrpd 13054 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℝ+) |
| 104 | 101, 81, 103 | ledivmul2d 13110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (((abs‘𝐵) / 𝑛) ≤ 𝐶 ↔ (abs‘𝐵) ≤ (𝐶 · 𝑛))) |
| 105 | 99, 104 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → ((abs‘𝐵) / 𝑛) ≤ 𝐶) |
| 106 | 69, 73, 81, 105 | fsumle 15820 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶) |
| 107 | | fsumharmonic.0 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶) |
| 108 | 1, 13, 107, 71 | fsumless 15817 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶 ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶) |
| 109 | 74, 82, 14, 106, 108 | letrd 11397 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶) |
| 110 | 78, 3 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℕ) |
| 111 | 110 | nnrecred 12296 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℝ) |
| 112 | 75, 111 | fsumrecl 15755 |
. . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ) |
| 113 | 16, 112 | remulcld 11270 |
. . . . 5
⊢ (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ∈ ℝ) |
| 114 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑅 ∈ ℝ) |
| 115 | 114 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑅 ∈ ℂ) |
| 116 | 110 | nncnd 12261 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℂ) |
| 117 | 110 | nnne0d 12295 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ≠ 0) |
| 118 | 115, 116,
117 | divrecd 12025 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 / 𝑛) = (𝑅 · (1 / 𝑛))) |
| 119 | 114, 110 | nndivred 12299 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 / 𝑛) ∈ ℝ) |
| 120 | 118, 119 | eqeltrrd 2836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 · (1 / 𝑛)) ∈ ℝ) |
| 121 | 78, 10 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (abs‘𝐵) ∈ ℝ) |
| 122 | 78, 32 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℝ+) |
| 123 | | noel 4318 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑛 ∈
∅ |
| 124 | | elin 3947 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈
((1...(⌊‘(𝐴 /
𝑇))) ∩
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) |
| 125 | 48 | eleq2d 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑛 ∈ ((1...(⌊‘(𝐴 / 𝑇))) ∩ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ 𝑛 ∈ ∅)) |
| 126 | 124, 125 | bitr3id 285 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ 𝑛 ∈ ∅)) |
| 127 | 123, 126 | mtbiri 327 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) |
| 128 | | imnan 399 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈
(1...(⌊‘(𝐴 /
𝑇))) → ¬ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ ¬ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) |
| 129 | 127, 128 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) → ¬ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) |
| 130 | 129 | con2d 134 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) → ¬ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))))) |
| 131 | 130 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ¬ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) |
| 132 | 83 | baibd 539 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 / 𝑇) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑛 ≤ (𝐴 / 𝑇))) |
| 133 | 53, 3, 132 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑛 ≤ (𝐴 / 𝑇))) |
| 134 | 133, 93 | bitrd 279 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑇 ≤ (𝐴 / 𝑛))) |
| 135 | 78, 134 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑇 ≤ (𝐴 / 𝑛))) |
| 136 | 131, 135 | mtbid 324 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ¬ 𝑇 ≤ (𝐴 / 𝑛)) |
| 137 | 54 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝐴 ∈ ℝ) |
| 138 | 137, 110 | nndivred 12299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ) |
| 139 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑇 ∈ ℝ) |
| 140 | 138, 139 | ltnled 11387 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 ↔ ¬ 𝑇 ≤ (𝐴 / 𝑛))) |
| 141 | 136, 140 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝐴 / 𝑛) < 𝑇) |
| 142 | | fsumharmonic.2 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅) |
| 143 | 142 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 → (abs‘𝐵) ≤ 𝑅)) |
| 144 | 78, 143 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 → (abs‘𝐵) ≤ 𝑅)) |
| 145 | 141, 144 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (abs‘𝐵) ≤ 𝑅) |
| 146 | 121, 114,
122, 145 | lediv1dd 13114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ≤ (𝑅 / 𝑛)) |
| 147 | 146, 118 | breqtrd 5150 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ≤ (𝑅 · (1 / 𝑛))) |
| 148 | 75, 79, 120, 147 | fsumle 15820 |
. . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(𝑅 · (1 / 𝑛))) |
| 149 | 16 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 150 | 111 | recnd 11268 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℂ) |
| 151 | 75, 149, 150 | fsummulc2 15805 |
. . . . . 6
⊢ (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(𝑅 · (1 / 𝑛))) |
| 152 | 148, 151 | breqtrrd 5152 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛))) |
| 153 | 102 | nnrecred 12296 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈ ℝ) |
| 154 | 69, 153 | fsumrecl 15755 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℝ) |
| 155 | 154 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℂ) |
| 156 | 112 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℂ) |
| 157 | 4 | nnrecred 12296 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℝ) |
| 158 | 157 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℂ) |
| 159 | 48, 66, 1, 158 | fsumsplit 15762 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛))) |
| 160 | 155, 156,
159 | mvrladdd 11655 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) |
| 161 | 1, 157 | fsumrecl 15755 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ) |
| 162 | 161 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ) |
| 163 | 154 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℝ) |
| 164 | 162, 163 | resubcld 11670 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ∈ ℝ) |
| 165 | | 0red 11243 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → 0 ∈
ℝ) |
| 166 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → ((log‘𝑇) + 1) ∈
ℝ) |
| 167 | | fzfid 13996 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘(𝐴 / 𝑇))) ∈ Fin) |
| 168 | 103 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℝ+) |
| 169 | 168 | rpreccld 13066 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈
ℝ+) |
| 170 | 169 | rpred 13056 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈ ℝ) |
| 171 | 169 | rpge0d 13060 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 0 ≤ (1 / 𝑛)) |
| 172 | 40 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 ∈
ℝ+) |
| 173 | 172 | rpge0d 13060 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐴 < 1) → 0 ≤ 𝐴) |
| 174 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 < 1) |
| 175 | | 0p1e1 12367 |
. . . . . . . . . . . . . . . 16
⊢ (0 + 1) =
1 |
| 176 | 174, 175 | breqtrrdi 5166 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 < (0 + 1)) |
| 177 | 54 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 ∈ ℝ) |
| 178 | | 0z 12604 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ |
| 179 | | flbi 13838 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℤ) → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < (0 + 1)))) |
| 180 | 177, 178,
179 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐴 < 1) → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < (0 + 1)))) |
| 181 | 173, 176,
180 | mpbir2and 713 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 < 1) → (⌊‘𝐴) = 0) |
| 182 | 181 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘𝐴)) = (1...0)) |
| 183 | | fz10 13567 |
. . . . . . . . . . . . 13
⊢ (1...0) =
∅ |
| 184 | 182, 183 | eqtrdi 2787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘𝐴)) = ∅) |
| 185 | | 0ss 4380 |
. . . . . . . . . . . 12
⊢ ∅
⊆ (1...(⌊‘(𝐴 / 𝑇))) |
| 186 | 184, 185 | eqsstrdi 4008 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘𝐴)) ⊆
(1...(⌊‘(𝐴 /
𝑇)))) |
| 187 | 167, 170,
171, 186 | fsumless 15817 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) |
| 188 | 162, 163 | suble0d 11833 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ 0 ↔ Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛))) |
| 189 | 187, 188 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ 0) |
| 190 | 18, 23 | logge0d 26596 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ (log‘𝑇)) |
| 191 | | 0le1 11765 |
. . . . . . . . . . . 12
⊢ 0 ≤
1 |
| 192 | 191 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ 1) |
| 193 | 26, 20, 190, 192 | addge0d 11818 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ ((log‘𝑇) + 1)) |
| 194 | 193 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → 0 ≤ ((log‘𝑇) + 1)) |
| 195 | 164, 165,
166, 189, 194 | letrd 11397 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1)) |
| 196 | | harmonicubnd 26977 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ≤ ((log‘𝐴) + 1)) |
| 197 | 54, 196 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1)) |
| 198 | | harmoniclbnd 26976 |
. . . . . . . . . . . 12
⊢ ((𝐴 / 𝑇) ∈ ℝ+ →
(log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈
(1...(⌊‘(𝐴 /
𝑇)))(1 / 𝑛)) |
| 199 | 41, 198 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) |
| 200 | 199 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) |
| 201 | 40 | relogcld 26589 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) |
| 202 | | peano2re 11413 |
. . . . . . . . . . . . 13
⊢
((log‘𝐴)
∈ ℝ → ((log‘𝐴) + 1) ∈ ℝ) |
| 203 | 201, 202 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝐴) + 1) ∈
ℝ) |
| 204 | 41 | relogcld 26589 |
. . . . . . . . . . . 12
⊢ (𝜑 → (log‘(𝐴 / 𝑇)) ∈ ℝ) |
| 205 | | le2sub 11741 |
. . . . . . . . . . . 12
⊢
(((Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ∈ ℝ ∧
Σ𝑛 ∈
(1...(⌊‘(𝐴 /
𝑇)))(1 / 𝑛) ∈ ℝ) ∧ (((log‘𝐴) + 1) ∈ ℝ ∧
(log‘(𝐴 / 𝑇)) ∈ ℝ)) →
((Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))))) |
| 206 | 161, 154,
203, 204, 205 | syl22anc 838 |
. . . . . . . . . . 11
⊢ (𝜑 → ((Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))))) |
| 207 | 206 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))))) |
| 208 | 197, 200,
207 | mp2and 699 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇)))) |
| 209 | 201 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → (log‘𝐴) ∈
ℂ) |
| 210 | 20 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
| 211 | 26 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → (log‘𝑇) ∈
ℂ) |
| 212 | 209, 210,
211 | pnncand 11638 |
. . . . . . . . . . 11
⊢ (𝜑 → (((log‘𝐴) + 1) − ((log‘𝐴) − (log‘𝑇))) = (1 + (log‘𝑇))) |
| 213 | 40, 25 | relogdivd 26592 |
. . . . . . . . . . . 12
⊢ (𝜑 → (log‘(𝐴 / 𝑇)) = ((log‘𝐴) − (log‘𝑇))) |
| 214 | 213 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝜑 → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = (((log‘𝐴) + 1) − ((log‘𝐴) − (log‘𝑇)))) |
| 215 | | ax-1cn 11192 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 216 | | addcom 11426 |
. . . . . . . . . . . 12
⊢
(((log‘𝑇)
∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑇) + 1) = (1 + (log‘𝑇))) |
| 217 | 211, 215,
216 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝑇) + 1) = (1 + (log‘𝑇))) |
| 218 | 212, 214,
217 | 3eqtr4d 2781 |
. . . . . . . . . 10
⊢ (𝜑 → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = ((log‘𝑇) + 1)) |
| 219 | 218 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = ((log‘𝑇) + 1)) |
| 220 | 208, 219 | breqtrd 5150 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1)) |
| 221 | 195, 220,
54, 20 | ltlecasei 11348 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1)) |
| 222 | 160, 221 | eqbrtrrd 5148 |
. . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝑇) + 1)) |
| 223 | | lemul2a 12101 |
. . . . . 6
⊢
(((Σ𝑛 ∈
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ ∧ ((log‘𝑇) + 1) ∈ ℝ ∧
(𝑅 ∈ ℝ ∧ 0
≤ 𝑅)) ∧ Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝑇) + 1)) → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ≤ (𝑅 · ((log‘𝑇) + 1))) |
| 224 | 112, 27, 15, 222, 223 | syl31anc 1375 |
. . . . 5
⊢ (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ≤ (𝑅 · ((log‘𝑇) + 1))) |
| 225 | 80, 113, 28, 152, 224 | letrd 11397 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (𝑅 · ((log‘𝑇) + 1))) |
| 226 | 74, 80, 14, 28, 109, 225 | le2addd 11861 |
. . 3
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) |
| 227 | 68, 226 | eqbrtrd 5146 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) |
| 228 | 9, 12, 29, 39, 227 | letrd 11397 |
1
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) |