Proof of Theorem fsumharmonic
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fzfid 14015 | . . . 4
⊢ (𝜑 → (1...(⌊‘𝐴)) ∈ Fin) | 
| 2 |  | fsumharmonic.b | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ) | 
| 3 |  | elfznn 13594 | . . . . . . 7
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) | 
| 4 | 3 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ) | 
| 5 | 4 | nncnd 12283 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ) | 
| 6 | 4 | nnne0d 12317 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0) | 
| 7 | 2, 5, 6 | divcld 12044 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝐵 / 𝑛) ∈ ℂ) | 
| 8 | 1, 7 | fsumcl 15770 | . . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛) ∈ ℂ) | 
| 9 | 8 | abscld 15476 | . 2
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ∈ ℝ) | 
| 10 | 2 | abscld 15476 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘𝐵) ∈ ℝ) | 
| 11 | 10, 4 | nndivred 12321 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℝ) | 
| 12 | 1, 11 | fsumrecl 15771 | . 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ∈ ℝ) | 
| 13 |  | fsumharmonic.c | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ) | 
| 14 | 1, 13 | fsumrecl 15771 | . . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 ∈ ℝ) | 
| 15 |  | fsumharmonic.r | . . . . 5
⊢ (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | 
| 16 | 15 | simpld 494 | . . . 4
⊢ (𝜑 → 𝑅 ∈ ℝ) | 
| 17 |  | fsumharmonic.t | . . . . . . . 8
⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇)) | 
| 18 | 17 | simpld 494 | . . . . . . 7
⊢ (𝜑 → 𝑇 ∈ ℝ) | 
| 19 |  | 0red 11265 | . . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) | 
| 20 |  | 1red 11263 | . . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) | 
| 21 |  | 0lt1 11786 | . . . . . . . . 9
⊢ 0 <
1 | 
| 22 | 21 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 0 < 1) | 
| 23 | 17 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑇) | 
| 24 | 19, 20, 18, 22, 23 | ltletrd 11422 | . . . . . . 7
⊢ (𝜑 → 0 < 𝑇) | 
| 25 | 18, 24 | elrpd 13075 | . . . . . 6
⊢ (𝜑 → 𝑇 ∈
ℝ+) | 
| 26 | 25 | relogcld 26666 | . . . . 5
⊢ (𝜑 → (log‘𝑇) ∈
ℝ) | 
| 27 | 26, 20 | readdcld 11291 | . . . 4
⊢ (𝜑 → ((log‘𝑇) + 1) ∈
ℝ) | 
| 28 | 16, 27 | remulcld 11292 | . . 3
⊢ (𝜑 → (𝑅 · ((log‘𝑇) + 1)) ∈ ℝ) | 
| 29 | 14, 28 | readdcld 11291 | . 2
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1))) ∈ ℝ) | 
| 30 | 1, 7 | fsumabs 15838 | . . 3
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))(abs‘(𝐵 / 𝑛))) | 
| 31 | 2, 5, 6 | absdivd 15495 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘(𝐵 / 𝑛)) = ((abs‘𝐵) / (abs‘𝑛))) | 
| 32 | 4 | nnrpd 13076 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+) | 
| 33 | 32 | rprege0d 13085 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) | 
| 34 |  | absid 15336 | . . . . . . 7
⊢ ((𝑛 ∈ ℝ ∧ 0 ≤
𝑛) → (abs‘𝑛) = 𝑛) | 
| 35 | 33, 34 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘𝑛) = 𝑛) | 
| 36 | 35 | oveq2d 7448 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / (abs‘𝑛)) = ((abs‘𝐵) / 𝑛)) | 
| 37 | 31, 36 | eqtrd 2776 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (abs‘(𝐵 / 𝑛)) = ((abs‘𝐵) / 𝑛)) | 
| 38 | 37 | sumeq2dv 15739 | . . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(abs‘(𝐵 / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛)) | 
| 39 | 30, 38 | breqtrd 5168 | . 2
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛)) | 
| 40 |  | fsumharmonic.a | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 41 | 40, 25 | rpdivcld 13095 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 / 𝑇) ∈
ℝ+) | 
| 42 | 41 | rprege0d 13085 | . . . . . . . 8
⊢ (𝜑 → ((𝐴 / 𝑇) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑇))) | 
| 43 |  | flge0nn0 13861 | . . . . . . . 8
⊢ (((𝐴 / 𝑇) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑇)) → (⌊‘(𝐴 / 𝑇)) ∈
ℕ0) | 
| 44 | 42, 43 | syl 17 | . . . . . . 7
⊢ (𝜑 → (⌊‘(𝐴 / 𝑇)) ∈
ℕ0) | 
| 45 | 44 | nn0red 12590 | . . . . . 6
⊢ (𝜑 → (⌊‘(𝐴 / 𝑇)) ∈ ℝ) | 
| 46 | 45 | ltp1d 12199 | . . . . 5
⊢ (𝜑 → (⌊‘(𝐴 / 𝑇)) < ((⌊‘(𝐴 / 𝑇)) + 1)) | 
| 47 |  | fzdisj 13592 | . . . . 5
⊢
((⌊‘(𝐴 /
𝑇)) <
((⌊‘(𝐴 / 𝑇)) + 1) →
((1...(⌊‘(𝐴 /
𝑇))) ∩
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) = ∅) | 
| 48 | 46, 47 | syl 17 | . . . 4
⊢ (𝜑 →
((1...(⌊‘(𝐴 /
𝑇))) ∩
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) = ∅) | 
| 49 |  | nn0p1nn 12567 | . . . . . . 7
⊢
((⌊‘(𝐴 /
𝑇)) ∈
ℕ0 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈ ℕ) | 
| 50 | 44, 49 | syl 17 | . . . . . 6
⊢ (𝜑 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈ ℕ) | 
| 51 |  | nnuz 12922 | . . . . . 6
⊢ ℕ =
(ℤ≥‘1) | 
| 52 | 50, 51 | eleqtrdi 2850 | . . . . 5
⊢ (𝜑 → ((⌊‘(𝐴 / 𝑇)) + 1) ∈
(ℤ≥‘1)) | 
| 53 | 41 | rpred 13078 | . . . . . 6
⊢ (𝜑 → (𝐴 / 𝑇) ∈ ℝ) | 
| 54 | 40 | rpred 13078 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 55 | 18, 24 | jca 511 | . . . . . . . . 9
⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 0 < 𝑇)) | 
| 56 | 40 | rpregt0d 13084 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | 
| 57 |  | lediv2 12159 | . . . . . . . . 9
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝑇 ↔ (𝐴 / 𝑇) ≤ (𝐴 / 1))) | 
| 58 | 20, 22, 55, 56, 57 | syl211anc 1377 | . . . . . . . 8
⊢ (𝜑 → (1 ≤ 𝑇 ↔ (𝐴 / 𝑇) ≤ (𝐴 / 1))) | 
| 59 | 23, 58 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → (𝐴 / 𝑇) ≤ (𝐴 / 1)) | 
| 60 | 54 | recnd 11290 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 61 | 60 | div1d 12036 | . . . . . . 7
⊢ (𝜑 → (𝐴 / 1) = 𝐴) | 
| 62 | 59, 61 | breqtrd 5168 | . . . . . 6
⊢ (𝜑 → (𝐴 / 𝑇) ≤ 𝐴) | 
| 63 |  | flword2 13854 | . . . . . 6
⊢ (((𝐴 / 𝑇) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 / 𝑇) ≤ 𝐴) → (⌊‘𝐴) ∈
(ℤ≥‘(⌊‘(𝐴 / 𝑇)))) | 
| 64 | 53, 54, 62, 63 | syl3anc 1372 | . . . . 5
⊢ (𝜑 → (⌊‘𝐴) ∈
(ℤ≥‘(⌊‘(𝐴 / 𝑇)))) | 
| 65 |  | fzsplit2 13590 | . . . . 5
⊢
((((⌊‘(𝐴
/ 𝑇)) + 1) ∈
(ℤ≥‘1) ∧ (⌊‘𝐴) ∈
(ℤ≥‘(⌊‘(𝐴 / 𝑇)))) → (1...(⌊‘𝐴)) = ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) | 
| 66 | 52, 64, 65 | syl2anc 584 | . . . 4
⊢ (𝜑 → (1...(⌊‘𝐴)) = ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) | 
| 67 | 11 | recnd 11290 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℂ) | 
| 68 | 48, 66, 1, 67 | fsumsplit 15778 | . . 3
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛))) | 
| 69 |  | fzfid 14015 | . . . . 5
⊢ (𝜑 → (1...(⌊‘(𝐴 / 𝑇))) ∈ Fin) | 
| 70 |  | ssun1 4177 | . . . . . . . 8
⊢
(1...(⌊‘(𝐴 / 𝑇))) ⊆ ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) | 
| 71 | 70, 66 | sseqtrrid 4026 | . . . . . . 7
⊢ (𝜑 → (1...(⌊‘(𝐴 / 𝑇))) ⊆ (1...(⌊‘𝐴))) | 
| 72 | 71 | sselda 3982 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ (1...(⌊‘𝐴))) | 
| 73 | 72, 11 | syldan 591 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → ((abs‘𝐵) / 𝑛) ∈ ℝ) | 
| 74 | 69, 73 | fsumrecl 15771 | . . . 4
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ∈ ℝ) | 
| 75 |  | fzfid 14015 | . . . . 5
⊢ (𝜑 → (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) ∈ Fin) | 
| 76 |  | ssun2 4178 | . . . . . . . 8
⊢
(((⌊‘(𝐴
/ 𝑇)) +
1)...(⌊‘𝐴))
⊆ ((1...(⌊‘(𝐴 / 𝑇))) ∪ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) | 
| 77 | 76, 66 | sseqtrrid 4026 | . . . . . . 7
⊢ (𝜑 → (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴))) | 
| 78 | 77 | sselda 3982 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ (1...(⌊‘𝐴))) | 
| 79 | 78, 11 | syldan 591 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ∈ ℝ) | 
| 80 | 75, 79 | fsumrecl 15771 | . . . 4
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ∈ ℝ) | 
| 81 | 72, 13 | syldan 591 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝐶 ∈ ℝ) | 
| 82 | 69, 81 | fsumrecl 15771 | . . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶 ∈ ℝ) | 
| 83 |  | fznnfl 13903 | . . . . . . . . . . 11
⊢ ((𝐴 / 𝑇) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑇)))) | 
| 84 | 53, 83 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑇)))) | 
| 85 | 84 | simplbda 499 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ≤ (𝐴 / 𝑇)) | 
| 86 | 32 | rpred 13078 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ) | 
| 87 | 54 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ) | 
| 88 | 55 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑇 ∈ ℝ ∧ 0 < 𝑇)) | 
| 89 |  | lemuldiv2 12150 | . . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 <
𝑇)) → ((𝑇 · 𝑛) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑇))) | 
| 90 | 86, 87, 88, 89 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑇 · 𝑛) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑇))) | 
| 91 | 18 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑇 ∈ ℝ) | 
| 92 | 91, 87, 32 | lemuldivd 13127 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑇 · 𝑛) ≤ 𝐴 ↔ 𝑇 ≤ (𝐴 / 𝑛))) | 
| 93 | 90, 92 | bitr3d 281 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ≤ (𝐴 / 𝑇) ↔ 𝑇 ≤ (𝐴 / 𝑛))) | 
| 94 | 72, 93 | syldan 591 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (𝑛 ≤ (𝐴 / 𝑇) ↔ 𝑇 ≤ (𝐴 / 𝑛))) | 
| 95 | 85, 94 | mpbid 232 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑇 ≤ (𝐴 / 𝑛)) | 
| 96 |  | fsumharmonic.1 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) | 
| 97 | 96 | ex 412 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑇 ≤ (𝐴 / 𝑛) → (abs‘𝐵) ≤ (𝐶 · 𝑛))) | 
| 98 | 72, 97 | syldan 591 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (𝑇 ≤ (𝐴 / 𝑛) → (abs‘𝐵) ≤ (𝐶 · 𝑛))) | 
| 99 | 95, 98 | mpd 15 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) | 
| 100 | 72, 2 | syldan 591 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝐵 ∈ ℂ) | 
| 101 | 100 | abscld 15476 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (abs‘𝐵) ∈ ℝ) | 
| 102 | 72, 3 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℕ) | 
| 103 | 102 | nnrpd 13076 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℝ+) | 
| 104 | 101, 81, 103 | ledivmul2d 13132 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (((abs‘𝐵) / 𝑛) ≤ 𝐶 ↔ (abs‘𝐵) ≤ (𝐶 · 𝑛))) | 
| 105 | 99, 104 | mpbird 257 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → ((abs‘𝐵) / 𝑛) ≤ 𝐶) | 
| 106 | 69, 73, 81, 105 | fsumle 15836 | . . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶) | 
| 107 |  | fsumharmonic.0 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶) | 
| 108 | 1, 13, 107, 71 | fsumless 15833 | . . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))𝐶 ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶) | 
| 109 | 74, 82, 14, 106, 108 | letrd 11419 | . . . 4
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶) | 
| 110 | 78, 3 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℕ) | 
| 111 | 110 | nnrecred 12318 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℝ) | 
| 112 | 75, 111 | fsumrecl 15771 | . . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ) | 
| 113 | 16, 112 | remulcld 11292 | . . . . 5
⊢ (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ∈ ℝ) | 
| 114 | 16 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑅 ∈ ℝ) | 
| 115 | 114 | recnd 11290 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑅 ∈ ℂ) | 
| 116 | 110 | nncnd 12283 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℂ) | 
| 117 | 110 | nnne0d 12317 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ≠ 0) | 
| 118 | 115, 116,
117 | divrecd 12047 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 / 𝑛) = (𝑅 · (1 / 𝑛))) | 
| 119 | 114, 110 | nndivred 12321 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 / 𝑛) ∈ ℝ) | 
| 120 | 118, 119 | eqeltrrd 2841 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑅 · (1 / 𝑛)) ∈ ℝ) | 
| 121 | 78, 10 | syldan 591 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (abs‘𝐵) ∈ ℝ) | 
| 122 | 78, 32 | syldan 591 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑛 ∈ ℝ+) | 
| 123 |  | noel 4337 | . . . . . . . . . . . . . . . 16
⊢  ¬
𝑛 ∈
∅ | 
| 124 |  | elin 3966 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈
((1...(⌊‘(𝐴 /
𝑇))) ∩
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) | 
| 125 | 48 | eleq2d 2826 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑛 ∈ ((1...(⌊‘(𝐴 / 𝑇))) ∩ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ 𝑛 ∈ ∅)) | 
| 126 | 124, 125 | bitr3id 285 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ 𝑛 ∈ ∅)) | 
| 127 | 123, 126 | mtbiri 327 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) | 
| 128 |  | imnan 399 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈
(1...(⌊‘(𝐴 /
𝑇))) → ¬ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) ↔ ¬ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) | 
| 129 | 127, 128 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) → ¬ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)))) | 
| 130 | 129 | con2d 134 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴)) → ¬ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))))) | 
| 131 | 130 | imp 406 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ¬ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) | 
| 132 | 83 | baibd 539 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 / 𝑇) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑛 ≤ (𝐴 / 𝑇))) | 
| 133 | 53, 3, 132 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑛 ≤ (𝐴 / 𝑇))) | 
| 134 | 133, 93 | bitrd 279 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑇 ≤ (𝐴 / 𝑛))) | 
| 135 | 78, 134 | syldan 591 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇))) ↔ 𝑇 ≤ (𝐴 / 𝑛))) | 
| 136 | 131, 135 | mtbid 324 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ¬ 𝑇 ≤ (𝐴 / 𝑛)) | 
| 137 | 54 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝐴 ∈ ℝ) | 
| 138 | 137, 110 | nndivred 12321 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ) | 
| 139 | 18 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → 𝑇 ∈ ℝ) | 
| 140 | 138, 139 | ltnled 11409 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 ↔ ¬ 𝑇 ≤ (𝐴 / 𝑛))) | 
| 141 | 136, 140 | mpbird 257 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (𝐴 / 𝑛) < 𝑇) | 
| 142 |  | fsumharmonic.2 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅) | 
| 143 | 142 | ex 412 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 → (abs‘𝐵) ≤ 𝑅)) | 
| 144 | 78, 143 | syldan 591 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((𝐴 / 𝑛) < 𝑇 → (abs‘𝐵) ≤ 𝑅)) | 
| 145 | 141, 144 | mpd 15 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (abs‘𝐵) ≤ 𝑅) | 
| 146 | 121, 114,
122, 145 | lediv1dd 13136 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ≤ (𝑅 / 𝑛)) | 
| 147 | 146, 118 | breqtrd 5168 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → ((abs‘𝐵) / 𝑛) ≤ (𝑅 · (1 / 𝑛))) | 
| 148 | 75, 79, 120, 147 | fsumle 15836 | . . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(𝑅 · (1 / 𝑛))) | 
| 149 | 16 | recnd 11290 | . . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℂ) | 
| 150 | 111 | recnd 11290 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℂ) | 
| 151 | 75, 149, 150 | fsummulc2 15821 | . . . . . 6
⊢ (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(𝑅 · (1 / 𝑛))) | 
| 152 | 148, 151 | breqtrrd 5170 | . . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛))) | 
| 153 | 102 | nnrecred 12318 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈ ℝ) | 
| 154 | 69, 153 | fsumrecl 15771 | . . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℝ) | 
| 155 | 154 | recnd 11290 | . . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℂ) | 
| 156 | 112 | recnd 11290 | . . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℂ) | 
| 157 | 4 | nnrecred 12318 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℝ) | 
| 158 | 157 | recnd 11290 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1 / 𝑛) ∈ ℂ) | 
| 159 | 48, 66, 1, 158 | fsumsplit 15778 | . . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛))) | 
| 160 | 155, 156,
159 | mvrladdd 11677 | . . . . . . 7
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) = Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) | 
| 161 | 1, 157 | fsumrecl 15771 | . . . . . . . . . . 11
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ) | 
| 162 | 161 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ) | 
| 163 | 154 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛) ∈ ℝ) | 
| 164 | 162, 163 | resubcld 11692 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ∈ ℝ) | 
| 165 |  | 0red 11265 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → 0 ∈
ℝ) | 
| 166 | 27 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → ((log‘𝑇) + 1) ∈
ℝ) | 
| 167 |  | fzfid 14015 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘(𝐴 / 𝑇))) ∈ Fin) | 
| 168 | 103 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 𝑛 ∈ ℝ+) | 
| 169 | 168 | rpreccld 13088 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈
ℝ+) | 
| 170 | 169 | rpred 13078 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → (1 / 𝑛) ∈ ℝ) | 
| 171 | 169 | rpge0d 13082 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 < 1) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))) → 0 ≤ (1 / 𝑛)) | 
| 172 | 40 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 ∈
ℝ+) | 
| 173 | 172 | rpge0d 13082 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐴 < 1) → 0 ≤ 𝐴) | 
| 174 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 < 1) | 
| 175 |  | 0p1e1 12389 | . . . . . . . . . . . . . . . 16
⊢ (0 + 1) =
1 | 
| 176 | 174, 175 | breqtrrdi 5184 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 < (0 + 1)) | 
| 177 | 54 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐴 < 1) → 𝐴 ∈ ℝ) | 
| 178 |  | 0z 12626 | . . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ | 
| 179 |  | flbi 13857 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℤ) → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < (0 + 1)))) | 
| 180 | 177, 178,
179 | sylancl 586 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐴 < 1) → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < (0 + 1)))) | 
| 181 | 173, 176,
180 | mpbir2and 713 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 < 1) → (⌊‘𝐴) = 0) | 
| 182 | 181 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘𝐴)) = (1...0)) | 
| 183 |  | fz10 13586 | . . . . . . . . . . . . 13
⊢ (1...0) =
∅ | 
| 184 | 182, 183 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘𝐴)) = ∅) | 
| 185 |  | 0ss 4399 | . . . . . . . . . . . 12
⊢ ∅
⊆ (1...(⌊‘(𝐴 / 𝑇))) | 
| 186 | 184, 185 | eqsstrdi 4027 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 < 1) → (1...(⌊‘𝐴)) ⊆
(1...(⌊‘(𝐴 /
𝑇)))) | 
| 187 | 167, 170,
171, 186 | fsumless 15833 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) | 
| 188 | 162, 163 | suble0d 11855 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 < 1) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ 0 ↔ Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛))) | 
| 189 | 187, 188 | mpbird 257 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ 0) | 
| 190 | 18, 23 | logge0d 26673 | . . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ (log‘𝑇)) | 
| 191 |  | 0le1 11787 | . . . . . . . . . . . 12
⊢ 0 ≤
1 | 
| 192 | 191 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ 1) | 
| 193 | 26, 20, 190, 192 | addge0d 11840 | . . . . . . . . . 10
⊢ (𝜑 → 0 ≤ ((log‘𝑇) + 1)) | 
| 194 | 193 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 < 1) → 0 ≤ ((log‘𝑇) + 1)) | 
| 195 | 164, 165,
166, 189, 194 | letrd 11419 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 < 1) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1)) | 
| 196 |  | harmonicubnd 27054 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) → Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ≤ ((log‘𝐴) + 1)) | 
| 197 | 54, 196 | sylan 580 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1)) | 
| 198 |  | harmoniclbnd 27053 | . . . . . . . . . . . 12
⊢ ((𝐴 / 𝑇) ∈ ℝ+ →
(log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈
(1...(⌊‘(𝐴 /
𝑇)))(1 / 𝑛)) | 
| 199 | 41, 198 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) | 
| 200 | 199 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) | 
| 201 | 40 | relogcld 26666 | . . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝐴) ∈
ℝ) | 
| 202 |  | peano2re 11435 | . . . . . . . . . . . . 13
⊢
((log‘𝐴)
∈ ℝ → ((log‘𝐴) + 1) ∈ ℝ) | 
| 203 | 201, 202 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝐴) + 1) ∈
ℝ) | 
| 204 | 41 | relogcld 26666 | . . . . . . . . . . . 12
⊢ (𝜑 → (log‘(𝐴 / 𝑇)) ∈ ℝ) | 
| 205 |  | le2sub 11763 | . . . . . . . . . . . 12
⊢
(((Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ∈ ℝ ∧
Σ𝑛 ∈
(1...(⌊‘(𝐴 /
𝑇)))(1 / 𝑛) ∈ ℝ) ∧ (((log‘𝐴) + 1) ∈ ℝ ∧
(log‘(𝐴 / 𝑇)) ∈ ℝ)) →
((Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))))) | 
| 206 | 161, 154,
203, 204, 205 | syl22anc 838 | . . . . . . . . . . 11
⊢ (𝜑 → ((Σ𝑛 ∈
(1...(⌊‘𝐴))(1 /
𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))))) | 
| 207 | 206 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝐴) + 1) ∧ (log‘(𝐴 / 𝑇)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))))) | 
| 208 | 197, 200,
207 | mp2and 699 | . . . . . . . . 9
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇)))) | 
| 209 | 201 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → (log‘𝐴) ∈
ℂ) | 
| 210 | 20 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) | 
| 211 | 26 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → (log‘𝑇) ∈
ℂ) | 
| 212 | 209, 210,
211 | pnncand 11660 | . . . . . . . . . . 11
⊢ (𝜑 → (((log‘𝐴) + 1) − ((log‘𝐴) − (log‘𝑇))) = (1 + (log‘𝑇))) | 
| 213 | 40, 25 | relogdivd 26669 | . . . . . . . . . . . 12
⊢ (𝜑 → (log‘(𝐴 / 𝑇)) = ((log‘𝐴) − (log‘𝑇))) | 
| 214 | 213 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝜑 → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = (((log‘𝐴) + 1) − ((log‘𝐴) − (log‘𝑇)))) | 
| 215 |  | ax-1cn 11214 | . . . . . . . . . . . 12
⊢ 1 ∈
ℂ | 
| 216 |  | addcom 11448 | . . . . . . . . . . . 12
⊢
(((log‘𝑇)
∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑇) + 1) = (1 + (log‘𝑇))) | 
| 217 | 211, 215,
216 | sylancl 586 | . . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝑇) + 1) = (1 + (log‘𝑇))) | 
| 218 | 212, 214,
217 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ (𝜑 → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = ((log‘𝑇) + 1)) | 
| 219 | 218 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (((log‘𝐴) + 1) − (log‘(𝐴 / 𝑇))) = ((log‘𝑇) + 1)) | 
| 220 | 208, 219 | breqtrd 5168 | . . . . . . . 8
⊢ ((𝜑 ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1)) | 
| 221 | 195, 220,
54, 20 | ltlecasei 11370 | . . . . . . 7
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))(1 / 𝑛) − Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))(1 / 𝑛)) ≤ ((log‘𝑇) + 1)) | 
| 222 | 160, 221 | eqbrtrrd 5166 | . . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝑇) + 1)) | 
| 223 |  | lemul2a 12123 | . . . . . 6
⊢
(((Σ𝑛 ∈
(((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ∈ ℝ ∧ ((log‘𝑇) + 1) ∈ ℝ ∧
(𝑅 ∈ ℝ ∧ 0
≤ 𝑅)) ∧ Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛) ≤ ((log‘𝑇) + 1)) → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ≤ (𝑅 · ((log‘𝑇) + 1))) | 
| 224 | 112, 27, 15, 222, 223 | syl31anc 1374 | . . . . 5
⊢ (𝜑 → (𝑅 · Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))(1 / 𝑛)) ≤ (𝑅 · ((log‘𝑇) + 1))) | 
| 225 | 80, 113, 28, 152, 224 | letrd 11419 | . . . 4
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (𝑅 · ((log‘𝑇) + 1))) | 
| 226 | 74, 80, 14, 28, 109, 225 | le2addd 11883 | . . 3
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝐴 / 𝑇)))((abs‘𝐵) / 𝑛) + Σ𝑛 ∈ (((⌊‘(𝐴 / 𝑇)) + 1)...(⌊‘𝐴))((abs‘𝐵) / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) | 
| 227 | 68, 226 | eqbrtrd 5164 | . 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((abs‘𝐵) / 𝑛) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) | 
| 228 | 9, 12, 29, 39, 227 | letrd 11419 | 1
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) |