Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincfsuppcl Structured version   Visualization version   GIF version

Theorem lincfsuppcl 48402
Description: A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincfsuppcl.b 𝐵 = (Base‘𝑀)
lincfsuppcl.r 𝑅 = (Scalar‘𝑀)
lincfsuppcl.s 𝑆 = (Base‘𝑅)
lincfsuppcl.0 0 = (0g𝑅)
Assertion
Ref Expression
lincfsuppcl ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem lincfsuppcl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincfsuppcl.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincfsuppcl.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6861 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2752 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 7397 . . . . . . 7 (𝑆m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
76eleq2i 2820 . . . . . 6 (𝐹 ∈ (𝑆m 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
87biimpi 216 . . . . 5 (𝐹 ∈ (𝑆m 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
98adantr 480 . . . 4 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
1093ad2ant3 1135 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
11 elpwg 4566 . . . . . 6 (𝑉𝑊 → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
12 lincfsuppcl.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
1312a1i 11 . . . . . . . 8 (𝑉𝑊𝐵 = (Base‘𝑀))
1413eqcomd 2735 . . . . . . 7 (𝑉𝑊 → (Base‘𝑀) = 𝐵)
1514sseq2d 3979 . . . . . 6 (𝑉𝑊 → (𝑉 ⊆ (Base‘𝑀) ↔ 𝑉𝐵))
1611, 15bitr2d 280 . . . . 5 (𝑉𝑊 → (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀)))
1716biimpa 476 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18173ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉 ∈ 𝒫 (Base‘𝑀))
19 lincval 48398 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
201, 10, 18, 19syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
21 eqid 2729 . . 3 (0g𝑀) = (0g𝑀)
22 lmodcmn 20816 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
23223ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
24 simpl 482 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉𝑊)
25243ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉𝑊)
261adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
27 elmapi 8822 . . . . . . . . 9 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉𝑆)
28 ffvelcdm 7053 . . . . . . . . . 10 ((𝐹:𝑉𝑆𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
2928ex 412 . . . . . . . . 9 (𝐹:𝑉𝑆 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3027, 29syl 17 . . . . . . . 8 (𝐹 ∈ (𝑆m 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3130adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
32313ad2ant3 1135 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3332imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
34 ssel 3940 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
3534adantl 481 . . . . . . 7 ((𝑉𝑊𝑉𝐵) → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1134 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉𝑣𝐵))
3736imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑣𝐵)
38 eqid 2729 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3912, 3, 38, 2lmodvscl 20784 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑣) ∈ 𝑆𝑣𝐵) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4026, 33, 37, 39syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4140fmpttd 7087 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
42 simpl 482 . . . . 5 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ (𝑆m 𝑉))
43423ad2ant3 1135 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ (𝑆m 𝑉))
44 simp3r 1203 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
45 lincfsuppcl.0 . . . . 5 0 = (0g𝑅)
4644, 45breqtrdi 5148 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp (0g𝑅))
473, 2scmfsupp 48363 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
481, 18, 43, 46, 47syl211anc 1378 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
4912, 21, 23, 25, 41, 48gsumcl 19845 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5020, 49eqeltrd 2828 1 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799   finSupp cfsupp 9312  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710  LModclmod 20766   linC clinc 48393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-linc 48395
This theorem is referenced by:  lindslinindimp2lem4  48450
  Copyright terms: Public domain W3C validator