Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincfsuppcl Structured version   Visualization version   GIF version

Theorem lincfsuppcl 48375
Description: A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincfsuppcl.b 𝐵 = (Base‘𝑀)
lincfsuppcl.r 𝑅 = (Scalar‘𝑀)
lincfsuppcl.s 𝑆 = (Base‘𝑅)
lincfsuppcl.0 0 = (0g𝑅)
Assertion
Ref Expression
lincfsuppcl ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem lincfsuppcl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincfsuppcl.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincfsuppcl.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6843 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2752 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 7379 . . . . . . 7 (𝑆m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
76eleq2i 2820 . . . . . 6 (𝐹 ∈ (𝑆m 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
87biimpi 216 . . . . 5 (𝐹 ∈ (𝑆m 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
98adantr 480 . . . 4 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
1093ad2ant3 1135 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
11 elpwg 4562 . . . . . 6 (𝑉𝑊 → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
12 lincfsuppcl.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
1312a1i 11 . . . . . . . 8 (𝑉𝑊𝐵 = (Base‘𝑀))
1413eqcomd 2735 . . . . . . 7 (𝑉𝑊 → (Base‘𝑀) = 𝐵)
1514sseq2d 3976 . . . . . 6 (𝑉𝑊 → (𝑉 ⊆ (Base‘𝑀) ↔ 𝑉𝐵))
1611, 15bitr2d 280 . . . . 5 (𝑉𝑊 → (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀)))
1716biimpa 476 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18173ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉 ∈ 𝒫 (Base‘𝑀))
19 lincval 48371 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
201, 10, 18, 19syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
21 eqid 2729 . . 3 (0g𝑀) = (0g𝑀)
22 lmodcmn 20792 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
23223ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
24 simpl 482 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉𝑊)
25243ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉𝑊)
261adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
27 elmapi 8799 . . . . . . . . 9 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉𝑆)
28 ffvelcdm 7035 . . . . . . . . . 10 ((𝐹:𝑉𝑆𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
2928ex 412 . . . . . . . . 9 (𝐹:𝑉𝑆 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3027, 29syl 17 . . . . . . . 8 (𝐹 ∈ (𝑆m 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3130adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
32313ad2ant3 1135 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3332imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
34 ssel 3937 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
3534adantl 481 . . . . . . 7 ((𝑉𝑊𝑉𝐵) → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1134 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉𝑣𝐵))
3736imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑣𝐵)
38 eqid 2729 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3912, 3, 38, 2lmodvscl 20760 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑣) ∈ 𝑆𝑣𝐵) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4026, 33, 37, 39syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4140fmpttd 7069 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
42 simpl 482 . . . . 5 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ (𝑆m 𝑉))
43423ad2ant3 1135 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ (𝑆m 𝑉))
44 simp3r 1203 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
45 lincfsuppcl.0 . . . . 5 0 = (0g𝑅)
4644, 45breqtrdi 5143 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp (0g𝑅))
473, 2scmfsupp 48336 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
481, 18, 43, 46, 47syl211anc 1378 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
4912, 21, 23, 25, 41, 48gsumcl 19821 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5020, 49eqeltrd 2828 1 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776   finSupp cfsupp 9288  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  CMndccmn 19686  LModclmod 20742   linC clinc 48366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20744  df-linc 48368
This theorem is referenced by:  lindslinindimp2lem4  48423
  Copyright terms: Public domain W3C validator