Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincfsuppcl Structured version   Visualization version   GIF version

Theorem lincfsuppcl 48356
Description: A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincfsuppcl.b 𝐵 = (Base‘𝑀)
lincfsuppcl.r 𝑅 = (Scalar‘𝑀)
lincfsuppcl.s 𝑆 = (Base‘𝑅)
lincfsuppcl.0 0 = (0g𝑅)
Assertion
Ref Expression
lincfsuppcl ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem lincfsuppcl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincfsuppcl.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincfsuppcl.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6884 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2759 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 7420 . . . . . . 7 (𝑆m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
76eleq2i 2827 . . . . . 6 (𝐹 ∈ (𝑆m 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
87biimpi 216 . . . . 5 (𝐹 ∈ (𝑆m 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
98adantr 480 . . . 4 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
1093ad2ant3 1135 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
11 elpwg 4583 . . . . . 6 (𝑉𝑊 → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
12 lincfsuppcl.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
1312a1i 11 . . . . . . . 8 (𝑉𝑊𝐵 = (Base‘𝑀))
1413eqcomd 2742 . . . . . . 7 (𝑉𝑊 → (Base‘𝑀) = 𝐵)
1514sseq2d 3996 . . . . . 6 (𝑉𝑊 → (𝑉 ⊆ (Base‘𝑀) ↔ 𝑉𝐵))
1611, 15bitr2d 280 . . . . 5 (𝑉𝑊 → (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀)))
1716biimpa 476 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18173ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉 ∈ 𝒫 (Base‘𝑀))
19 lincval 48352 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
201, 10, 18, 19syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
21 eqid 2736 . . 3 (0g𝑀) = (0g𝑀)
22 lmodcmn 20872 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
23223ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
24 simpl 482 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉𝑊)
25243ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉𝑊)
261adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
27 elmapi 8868 . . . . . . . . 9 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉𝑆)
28 ffvelcdm 7076 . . . . . . . . . 10 ((𝐹:𝑉𝑆𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
2928ex 412 . . . . . . . . 9 (𝐹:𝑉𝑆 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3027, 29syl 17 . . . . . . . 8 (𝐹 ∈ (𝑆m 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3130adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
32313ad2ant3 1135 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3332imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
34 ssel 3957 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
3534adantl 481 . . . . . . 7 ((𝑉𝑊𝑉𝐵) → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1134 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉𝑣𝐵))
3736imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑣𝐵)
38 eqid 2736 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3912, 3, 38, 2lmodvscl 20840 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑣) ∈ 𝑆𝑣𝐵) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4026, 33, 37, 39syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4140fmpttd 7110 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
42 simpl 482 . . . . 5 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ (𝑆m 𝑉))
43423ad2ant3 1135 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ (𝑆m 𝑉))
44 simp3r 1203 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
45 lincfsuppcl.0 . . . . 5 0 = (0g𝑅)
4644, 45breqtrdi 5165 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp (0g𝑅))
473, 2scmfsupp 48317 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
481, 18, 43, 46, 47syl211anc 1378 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
4912, 21, 23, 25, 41, 48gsumcl 19901 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5020, 49eqeltrd 2835 1 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  𝒫 cpw 4580   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845   finSupp cfsupp 9378  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766  LModclmod 20822   linC clinc 48347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-linc 48349
This theorem is referenced by:  lindslinindimp2lem4  48404
  Copyright terms: Public domain W3C validator