Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincfsuppcl Structured version   Visualization version   GIF version

Theorem lincfsuppcl 44302
 Description: A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincfsuppcl.b 𝐵 = (Base‘𝑀)
lincfsuppcl.r 𝑅 = (Scalar‘𝑀)
lincfsuppcl.s 𝑆 = (Base‘𝑅)
lincfsuppcl.0 0 = (0g𝑅)
Assertion
Ref Expression
lincfsuppcl ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem lincfsuppcl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1130 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincfsuppcl.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincfsuppcl.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6669 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2848 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 7161 . . . . . . 7 (𝑆m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
76eleq2i 2908 . . . . . 6 (𝐹 ∈ (𝑆m 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
87biimpi 217 . . . . 5 (𝐹 ∈ (𝑆m 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
98adantr 481 . . . 4 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
1093ad2ant3 1129 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
11 elpwg 4547 . . . . . 6 (𝑉𝑊 → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
12 lincfsuppcl.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
1312a1i 11 . . . . . . . 8 (𝑉𝑊𝐵 = (Base‘𝑀))
1413eqcomd 2831 . . . . . . 7 (𝑉𝑊 → (Base‘𝑀) = 𝐵)
1514sseq2d 4002 . . . . . 6 (𝑉𝑊 → (𝑉 ⊆ (Base‘𝑀) ↔ 𝑉𝐵))
1611, 15bitr2d 281 . . . . 5 (𝑉𝑊 → (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀)))
1716biimpa 477 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18173ad2ant2 1128 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉 ∈ 𝒫 (Base‘𝑀))
19 lincval 44298 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
201, 10, 18, 19syl3anc 1365 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
21 eqid 2825 . . 3 (0g𝑀) = (0g𝑀)
22 lmodcmn 19604 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
23223ad2ant1 1127 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
24 simpl 483 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉𝑊)
25243ad2ant2 1128 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉𝑊)
261adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
27 elmapi 8421 . . . . . . . . 9 (𝐹 ∈ (𝑆m 𝑉) → 𝐹:𝑉𝑆)
28 ffvelrn 6844 . . . . . . . . . 10 ((𝐹:𝑉𝑆𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
2928ex 413 . . . . . . . . 9 (𝐹:𝑉𝑆 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3027, 29syl 17 . . . . . . . 8 (𝐹 ∈ (𝑆m 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3130adantr 481 . . . . . . 7 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
32313ad2ant3 1129 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3332imp 407 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
34 ssel 3964 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
3534adantl 482 . . . . . . 7 ((𝑉𝑊𝑉𝐵) → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1128 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉𝑣𝐵))
3736imp 407 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑣𝐵)
38 eqid 2825 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3912, 3, 38, 2lmodvscl 19573 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑣) ∈ 𝑆𝑣𝐵) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4026, 33, 37, 39syl3anc 1365 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4140fmpttd 6874 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
42 simpl 483 . . . . 5 ((𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ (𝑆m 𝑉))
43423ad2ant3 1129 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ (𝑆m 𝑉))
44 simp3r 1196 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
45 lincfsuppcl.0 . . . . 5 0 = (0g𝑅)
4644, 45breqtrdi 5103 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp (0g𝑅))
473, 2scmfsupp 44260 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
481, 18, 43, 46, 47syl211anc 1370 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
4912, 21, 23, 25, 41, 48gsumcl 18957 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5020, 49eqeltrd 2917 1 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ⊆ wss 3939  𝒫 cpw 4541   class class class wbr 5062   ↦ cmpt 5142  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151   ↑m cmap 8399   finSupp cfsupp 8825  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  CMndccmn 18828  LModclmod 19556   linC clinc 44293 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-minusg 18039  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-lmod 19558  df-linc 44295 This theorem is referenced by:  lindslinindimp2lem4  44350
 Copyright terms: Public domain W3C validator