Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2m Structured version   Visualization version   GIF version

Theorem cdlemg2m 39778
Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h 𝐻 = (LHypβ€˜πΎ)
cdlemg2inv.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg2j.l ≀ = (leβ€˜πΎ)
cdlemg2j.j ∨ = (joinβ€˜πΎ)
cdlemg2j.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg2j.m ∧ = (meetβ€˜πΎ)
cdlemg2j.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdlemg2m (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ∧ π‘Š) = π‘ˆ)

Proof of Theorem cdlemg2m
StepHypRef Expression
1 cdlemg2inv.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 cdlemg2inv.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 cdlemg2j.l . . . 4 ≀ = (leβ€˜πΎ)
4 cdlemg2j.j . . . 4 ∨ = (joinβ€˜πΎ)
5 cdlemg2j.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 cdlemg2j.m . . . 4 ∧ = (meetβ€˜πΎ)
7 cdlemg2j.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
81, 2, 3, 4, 5, 6, 7cdlemg2k 39775 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ π‘ˆ))
98oveq1d 7426 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ∧ π‘Š) = (((πΉβ€˜π‘ƒ) ∨ π‘ˆ) ∧ π‘Š))
10 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
11 simp3 1138 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ 𝑇)
12 simp2l 1199 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
13 eqid 2732 . . . . . 6 (0.β€˜πΎ) = (0.β€˜πΎ)
143, 6, 13, 5, 1, 2ltrnmw 39325 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∧ π‘Š) = (0.β€˜πΎ))
1510, 11, 12, 14syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((πΉβ€˜π‘ƒ) ∧ π‘Š) = (0.β€˜πΎ))
1615oveq1d 7426 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (((πΉβ€˜π‘ƒ) ∧ π‘Š) ∨ π‘ˆ) = ((0.β€˜πΎ) ∨ π‘ˆ))
17 simp1l 1197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ HL)
183, 5, 1, 2ltrnel 39313 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
1910, 11, 12, 18syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘ƒ) ≀ π‘Š))
2019simpld 495 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
21 simp1r 1198 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘Š ∈ 𝐻)
22 simp2ll 1240 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝑃 ∈ 𝐴)
23 simp2rl 1242 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝑄 ∈ 𝐴)
24 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
253, 4, 6, 5, 1, 7, 24cdleme0aa 39384 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
2617, 21, 22, 23, 25syl211anc 1376 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
2724, 1lhpbase 39172 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2821, 27syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘Š ∈ (Baseβ€˜πΎ))
2917hllatd 38537 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ Lat)
3024, 4, 5hlatjcl 38540 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3117, 22, 23, 30syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3224, 3, 6latmle2 18422 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
3329, 31, 28, 32syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
347, 33eqbrtrid 5183 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ π‘ˆ ≀ π‘Š)
3524, 3, 4, 6, 5atmod4i2 39041 . . . 4 ((𝐾 ∈ HL ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ π‘ˆ ≀ π‘Š) β†’ (((πΉβ€˜π‘ƒ) ∧ π‘Š) ∨ π‘ˆ) = (((πΉβ€˜π‘ƒ) ∨ π‘ˆ) ∧ π‘Š))
3617, 20, 26, 28, 34, 35syl131anc 1383 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (((πΉβ€˜π‘ƒ) ∧ π‘Š) ∨ π‘ˆ) = (((πΉβ€˜π‘ƒ) ∨ π‘ˆ) ∧ π‘Š))
37 hlol 38534 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
3817, 37syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ OL)
3924, 4, 13olj02 38399 . . . 4 ((𝐾 ∈ OL ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ) ∨ π‘ˆ) = π‘ˆ)
4038, 26, 39syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((0.β€˜πΎ) ∨ π‘ˆ) = π‘ˆ)
4116, 36, 403eqtr3d 2780 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (((πΉβ€˜π‘ƒ) ∨ π‘ˆ) ∧ π‘Š) = π‘ˆ)
429, 41eqtrd 2772 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ∧ π‘Š) = π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  0.cp0 18380  Latclat 18388  OLcol 38347  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333
This theorem is referenced by:  cdlemg4f  39789  cdlemg10b  39809
  Copyright terms: Public domain W3C validator