MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpmul2 Structured version   Visualization version   GIF version

Theorem cxpmul2 25379
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 25378 with more general conditions on 𝐴 and 𝐵 when 𝐶 is an integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
cxpmul2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))

Proof of Theorem cxpmul2
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7158 . . . . . . 7 (𝑥 = 0 → (𝐵 · 𝑥) = (𝐵 · 0))
21oveq2d 7166 . . . . . 6 (𝑥 = 0 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 0)))
3 oveq2 7158 . . . . . 6 (𝑥 = 0 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑0))
42, 3eqeq12d 2774 . . . . 5 (𝑥 = 0 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0)))
54imbi2d 344 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))))
6 oveq2 7158 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 · 𝑥) = (𝐵 · 𝑘))
76oveq2d 7166 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝑘)))
8 oveq2 7158 . . . . . 6 (𝑥 = 𝑘 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝑘))
97, 8eqeq12d 2774 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)))
109imbi2d 344 . . . 4 (𝑥 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘))))
11 oveq2 7158 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑘 + 1)))
1211oveq2d 7166 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · (𝑘 + 1))))
13 oveq2 7158 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))
1412, 13eqeq12d 2774 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
1514imbi2d 344 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
16 oveq2 7158 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶))
1716oveq2d 7166 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝐶)))
18 oveq2 7158 . . . . . 6 (𝑥 = 𝐶 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝐶))
1917, 18eqeq12d 2774 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
2019imbi2d 344 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))))
21 cxp0 25360 . . . . . 6 (𝐴 ∈ ℂ → (𝐴𝑐0) = 1)
2221adantr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐0) = 1)
23 mul01 10857 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 · 0) = 0)
2423adantl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 0) = 0)
2524oveq2d 7166 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = (𝐴𝑐0))
26 cxpcl 25364 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
2726exp0d 13554 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐𝐵)↑0) = 1)
2822, 25, 273eqtr4d 2803 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))
29 oveq1 7157 . . . . . . 7 ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
30 0cn 10671 . . . . . . . . . . . . 13 0 ∈ ℂ
31 cxp0 25360 . . . . . . . . . . . . 13 (0 ∈ ℂ → (0↑𝑐0) = 1)
3230, 31ax-mp 5 . . . . . . . . . . . 12 (0↑𝑐0) = 1
33 1t1e1 11836 . . . . . . . . . . . 12 (1 · 1) = 1
3432, 33eqtr4i 2784 . . . . . . . . . . 11 (0↑𝑐0) = (1 · 1)
35 simplr 768 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐴 = 0)
36 simpr 488 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
3736oveq1d 7165 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = (0 · (𝑘 + 1)))
38 nn0p1nn 11973 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3938adantl 485 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
4039nncnd 11690 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
4140ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝑘 + 1) ∈ ℂ)
4241mul02d 10876 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · (𝑘 + 1)) = 0)
4337, 42eqtrd 2793 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = 0)
4435, 43oveq12d 7168 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐0))
4536oveq1d 7165 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = (0 · 𝑘))
46 nn0cn 11944 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
4746adantl 485 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
4847ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝑘 ∈ ℂ)
4948mul02d 10876 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · 𝑘) = 0)
5045, 49eqtrd 2793 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = 0)
5135, 50oveq12d 7168 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = (0↑𝑐0))
5251, 32eqtrdi 2809 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = 1)
5335, 36oveq12d 7168 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5453, 32eqtrdi 2809 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
5552, 54oveq12d 7168 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (1 · 1))
5634, 44, 553eqtr4a 2819 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
57 simpll 766 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5857ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
59 simplr 768 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
6059, 47mulcld 10699 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · 𝑘) ∈ ℂ)
6160ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
62 cxpcl 25364 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑘) ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6358, 61, 62syl2anc 587 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6463mul01d 10877 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · 0) = 0)
65 simplr 768 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
6665oveq1d 7165 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
6759ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
68 simpr 488 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
69 0cxp 25356 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7067, 68, 69syl2anc 587 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7166, 70eqtrd 2793 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
7271oveq2d 7166 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · 0))
7365oveq1d 7165 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐(𝐵 · (𝑘 + 1))))
7440ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ∈ ℂ)
7567, 74mulcld 10699 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ∈ ℂ)
7639nnne0d 11724 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7776ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ≠ 0)
7867, 74, 68, 77mulne0d 11330 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ≠ 0)
79 0cxp 25356 . . . . . . . . . . . . 13 (((𝐵 · (𝑘 + 1)) ∈ ℂ ∧ (𝐵 · (𝑘 + 1)) ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8075, 78, 79syl2anc 587 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8173, 80eqtrd 2793 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = 0)
8264, 72, 813eqtr4rd 2804 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8356, 82pm2.61dane 3038 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8459adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℂ)
8547adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑘 ∈ ℂ)
86 1cnd 10674 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
8784, 85, 86adddid 10703 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + (𝐵 · 1)))
8884mulid1d 10696 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 1) = 𝐵)
8988oveq2d 7166 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝑘) + (𝐵 · 1)) = ((𝐵 · 𝑘) + 𝐵))
9087, 89eqtrd 2793 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + 𝐵))
9190oveq2d 7166 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (𝐴𝑐((𝐵 · 𝑘) + 𝐵)))
9257adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
93 simpr 488 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
9460adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
95 cxpadd 25369 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 · 𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9692, 93, 94, 84, 95syl211anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9791, 96eqtrd 2793 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9883, 97pm2.61dane 3038 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
99 expp1 13486 . . . . . . . . 9 (((𝐴𝑐𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10026, 99sylan 583 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10198, 100eqeq12d 2774 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)) ↔ ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵))))
10229, 101syl5ibr 249 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
103102expcom 417 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
104103a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
1055, 10, 15, 20, 28, 104nn0ind 12116 . . 3 (𝐶 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
106105com12 32 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
1071063impia 1114 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  (class class class)co 7150  cc 10573  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580  cn 11674  0cn0 11934  cexp 13479  𝑐ccxp 25246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-cxp 25248
This theorem is referenced by:  cxproot  25380  cxpmul2z  25381  cxpmul2d  25399  logbgcd1irr  25479
  Copyright terms: Public domain W3C validator