MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpmul2 Structured version   Visualization version   GIF version

Theorem cxpmul2 26645
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 26644 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
cxpmul2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))

Proof of Theorem cxpmul2
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7363 . . . . . . 7 (𝑥 = 0 → (𝐵 · 𝑥) = (𝐵 · 0))
21oveq2d 7371 . . . . . 6 (𝑥 = 0 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 0)))
3 oveq2 7363 . . . . . 6 (𝑥 = 0 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑0))
42, 3eqeq12d 2749 . . . . 5 (𝑥 = 0 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0)))
54imbi2d 340 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))))
6 oveq2 7363 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 · 𝑥) = (𝐵 · 𝑘))
76oveq2d 7371 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝑘)))
8 oveq2 7363 . . . . . 6 (𝑥 = 𝑘 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝑘))
97, 8eqeq12d 2749 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)))
109imbi2d 340 . . . 4 (𝑥 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘))))
11 oveq2 7363 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑘 + 1)))
1211oveq2d 7371 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · (𝑘 + 1))))
13 oveq2 7363 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))
1412, 13eqeq12d 2749 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
1514imbi2d 340 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
16 oveq2 7363 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶))
1716oveq2d 7371 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝐶)))
18 oveq2 7363 . . . . . 6 (𝑥 = 𝐶 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝐶))
1917, 18eqeq12d 2749 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
2019imbi2d 340 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))))
21 cxp0 26626 . . . . . 6 (𝐴 ∈ ℂ → (𝐴𝑐0) = 1)
2221adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐0) = 1)
23 mul01 11303 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 · 0) = 0)
2423adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 0) = 0)
2524oveq2d 7371 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = (𝐴𝑐0))
26 cxpcl 26630 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
2726exp0d 14054 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐𝐵)↑0) = 1)
2822, 25, 273eqtr4d 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))
29 oveq1 7362 . . . . . . 7 ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
30 0cn 11115 . . . . . . . . . . . . 13 0 ∈ ℂ
31 cxp0 26626 . . . . . . . . . . . . 13 (0 ∈ ℂ → (0↑𝑐0) = 1)
3230, 31ax-mp 5 . . . . . . . . . . . 12 (0↑𝑐0) = 1
33 1t1e1 12293 . . . . . . . . . . . 12 (1 · 1) = 1
3432, 33eqtr4i 2759 . . . . . . . . . . 11 (0↑𝑐0) = (1 · 1)
35 simplr 768 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐴 = 0)
36 simpr 484 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
3736oveq1d 7370 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = (0 · (𝑘 + 1)))
38 nn0p1nn 12431 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3938adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
4039nncnd 12152 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
4140ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝑘 + 1) ∈ ℂ)
4241mul02d 11322 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · (𝑘 + 1)) = 0)
4337, 42eqtrd 2768 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = 0)
4435, 43oveq12d 7373 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐0))
4536oveq1d 7370 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = (0 · 𝑘))
46 nn0cn 12402 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
4746adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
4847ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝑘 ∈ ℂ)
4948mul02d 11322 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · 𝑘) = 0)
5045, 49eqtrd 2768 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = 0)
5135, 50oveq12d 7373 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = (0↑𝑐0))
5251, 32eqtrdi 2784 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = 1)
5335, 36oveq12d 7373 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5453, 32eqtrdi 2784 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
5552, 54oveq12d 7373 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (1 · 1))
5634, 44, 553eqtr4a 2794 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
57 simpll 766 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5857ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
59 simplr 768 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
6059, 47mulcld 11143 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · 𝑘) ∈ ℂ)
6160ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
62 cxpcl 26630 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑘) ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6358, 61, 62syl2anc 584 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6463mul01d 11323 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · 0) = 0)
65 simplr 768 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
6665oveq1d 7370 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
6759ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
68 simpr 484 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
69 0cxp 26622 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7067, 68, 69syl2anc 584 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7166, 70eqtrd 2768 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
7271oveq2d 7371 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · 0))
7365oveq1d 7370 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐(𝐵 · (𝑘 + 1))))
7440ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ∈ ℂ)
7567, 74mulcld 11143 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ∈ ℂ)
7639nnne0d 12186 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7776ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ≠ 0)
7867, 74, 68, 77mulne0d 11780 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ≠ 0)
79 0cxp 26622 . . . . . . . . . . . . 13 (((𝐵 · (𝑘 + 1)) ∈ ℂ ∧ (𝐵 · (𝑘 + 1)) ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8075, 78, 79syl2anc 584 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8173, 80eqtrd 2768 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = 0)
8264, 72, 813eqtr4rd 2779 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8356, 82pm2.61dane 3016 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8459adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℂ)
8547adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑘 ∈ ℂ)
86 1cnd 11118 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
8784, 85, 86adddid 11147 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + (𝐵 · 1)))
8884mulridd 11140 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 1) = 𝐵)
8988oveq2d 7371 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝑘) + (𝐵 · 1)) = ((𝐵 · 𝑘) + 𝐵))
9087, 89eqtrd 2768 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + 𝐵))
9190oveq2d 7371 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (𝐴𝑐((𝐵 · 𝑘) + 𝐵)))
9257adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
93 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
9460adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
95 cxpadd 26635 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 · 𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9692, 93, 94, 84, 95syl211anc 1378 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9791, 96eqtrd 2768 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9883, 97pm2.61dane 3016 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
99 expp1 13982 . . . . . . . . 9 (((𝐴𝑐𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10026, 99sylan 580 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10198, 100eqeq12d 2749 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)) ↔ ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵))))
10229, 101imbitrrid 246 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
103102expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
104103a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
1055, 10, 15, 20, 28, 104nn0ind 12578 . . 3 (𝐶 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
106105com12 32 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
1071063impia 1117 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7355  cc 11015  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  cn 12136  0cn0 12392  cexp 13975  𝑐ccxp 26511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512  df-cxp 26513
This theorem is referenced by:  cxproot  26646  cxpmul2z  26647  cxpmul2d  26665  logbgcd1irr  26751  cos9thpiminplylem4  33870
  Copyright terms: Public domain W3C validator