MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpmul2 Structured version   Visualization version   GIF version

Theorem cxpmul2 24740
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 24739 with more general conditions on 𝐴 and 𝐵 when 𝐶 is an integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
cxpmul2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))

Proof of Theorem cxpmul2
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6854 . . . . . . 7 (𝑥 = 0 → (𝐵 · 𝑥) = (𝐵 · 0))
21oveq2d 6862 . . . . . 6 (𝑥 = 0 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 0)))
3 oveq2 6854 . . . . . 6 (𝑥 = 0 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑0))
42, 3eqeq12d 2780 . . . . 5 (𝑥 = 0 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0)))
54imbi2d 331 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))))
6 oveq2 6854 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 · 𝑥) = (𝐵 · 𝑘))
76oveq2d 6862 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝑘)))
8 oveq2 6854 . . . . . 6 (𝑥 = 𝑘 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝑘))
97, 8eqeq12d 2780 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)))
109imbi2d 331 . . . 4 (𝑥 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘))))
11 oveq2 6854 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑘 + 1)))
1211oveq2d 6862 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · (𝑘 + 1))))
13 oveq2 6854 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))
1412, 13eqeq12d 2780 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
1514imbi2d 331 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
16 oveq2 6854 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶))
1716oveq2d 6862 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝐶)))
18 oveq2 6854 . . . . . 6 (𝑥 = 𝐶 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝐶))
1917, 18eqeq12d 2780 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
2019imbi2d 331 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))))
21 cxp0 24721 . . . . . 6 (𝐴 ∈ ℂ → (𝐴𝑐0) = 1)
2221adantr 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐0) = 1)
23 mul01 10473 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 · 0) = 0)
2423adantl 473 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 0) = 0)
2524oveq2d 6862 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = (𝐴𝑐0))
26 cxpcl 24725 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
2726exp0d 13214 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐𝐵)↑0) = 1)
2822, 25, 273eqtr4d 2809 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))
29 oveq1 6853 . . . . . . 7 ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
30 0cn 10289 . . . . . . . . . . . . 13 0 ∈ ℂ
31 cxp0 24721 . . . . . . . . . . . . 13 (0 ∈ ℂ → (0↑𝑐0) = 1)
3230, 31ax-mp 5 . . . . . . . . . . . 12 (0↑𝑐0) = 1
33 1t1e1 11444 . . . . . . . . . . . 12 (1 · 1) = 1
3432, 33eqtr4i 2790 . . . . . . . . . . 11 (0↑𝑐0) = (1 · 1)
35 simplr 785 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐴 = 0)
36 simpr 477 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
3736oveq1d 6861 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = (0 · (𝑘 + 1)))
38 nn0p1nn 11583 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3938adantl 473 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
4039nncnd 11296 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
4140ad2antrr 717 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝑘 + 1) ∈ ℂ)
4241mul02d 10492 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · (𝑘 + 1)) = 0)
4337, 42eqtrd 2799 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = 0)
4435, 43oveq12d 6864 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐0))
4536oveq1d 6861 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = (0 · 𝑘))
46 nn0cn 11553 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
4746adantl 473 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
4847ad2antrr 717 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝑘 ∈ ℂ)
4948mul02d 10492 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · 𝑘) = 0)
5045, 49eqtrd 2799 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = 0)
5135, 50oveq12d 6864 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = (0↑𝑐0))
5251, 32syl6eq 2815 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = 1)
5335, 36oveq12d 6864 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5453, 32syl6eq 2815 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
5552, 54oveq12d 6864 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (1 · 1))
5634, 44, 553eqtr4a 2825 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
57 simpll 783 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5857ad2antrr 717 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
59 simplr 785 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
6059, 47mulcld 10318 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · 𝑘) ∈ ℂ)
6160ad2antrr 717 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
62 cxpcl 24725 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑘) ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6358, 61, 62syl2anc 579 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6463mul01d 10493 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · 0) = 0)
65 simplr 785 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
6665oveq1d 6861 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
6759ad2antrr 717 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
68 simpr 477 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
69 0cxp 24717 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7067, 68, 69syl2anc 579 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7166, 70eqtrd 2799 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
7271oveq2d 6862 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · 0))
7365oveq1d 6861 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐(𝐵 · (𝑘 + 1))))
7440ad2antrr 717 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ∈ ℂ)
7567, 74mulcld 10318 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ∈ ℂ)
7639nnne0d 11326 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7776ad2antrr 717 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ≠ 0)
7867, 74, 68, 77mulne0d 10937 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ≠ 0)
79 0cxp 24717 . . . . . . . . . . . . 13 (((𝐵 · (𝑘 + 1)) ∈ ℂ ∧ (𝐵 · (𝑘 + 1)) ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8075, 78, 79syl2anc 579 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8173, 80eqtrd 2799 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = 0)
8264, 72, 813eqtr4rd 2810 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8356, 82pm2.61dane 3024 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8459adantr 472 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℂ)
8547adantr 472 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑘 ∈ ℂ)
86 1cnd 10292 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
8784, 85, 86adddid 10322 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + (𝐵 · 1)))
8884mulid1d 10315 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 1) = 𝐵)
8988oveq2d 6862 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝑘) + (𝐵 · 1)) = ((𝐵 · 𝑘) + 𝐵))
9087, 89eqtrd 2799 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + 𝐵))
9190oveq2d 6862 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (𝐴𝑐((𝐵 · 𝑘) + 𝐵)))
9257adantr 472 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
93 simpr 477 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
9460adantr 472 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
95 cxpadd 24730 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 · 𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9692, 93, 94, 84, 95syl211anc 1495 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9791, 96eqtrd 2799 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9883, 97pm2.61dane 3024 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
99 expp1 13079 . . . . . . . . 9 (((𝐴𝑐𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10026, 99sylan 575 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10198, 100eqeq12d 2780 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)) ↔ ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵))))
10229, 101syl5ibr 237 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
103102expcom 402 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
104103a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
1055, 10, 15, 20, 28, 104nn0ind 11724 . . 3 (𝐶 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
106105com12 32 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
1071063impia 1145 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  (class class class)co 6846  cc 10191  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198  cn 11278  0cn0 11542  cexp 13072  𝑐ccxp 24607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-sin 15096  df-cos 15097  df-pi 15099  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936  df-log 24608  df-cxp 24609
This theorem is referenced by:  cxproot  24741  cxpmul2z  24742  cxpmul2d  24760
  Copyright terms: Public domain W3C validator