MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Visualization version   GIF version

Theorem limsupgre 15513
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupgre.z 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
limsupgre ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem limsupgre
Dummy variables 𝑎 𝑖 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13179 . . . 4 < Or ℝ*
21supex 9500 . . 3 sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
32a1i 11 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
4 limsupval.1 . . 3 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
64limsupgval 15508 . . . 4 (𝑎 ∈ ℝ → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
76adantl 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
8 simpl3 1192 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (lim sup‘𝐹) < +∞)
9 limsupgre.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 uzssz 12896 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
119, 10eqsstri 4029 . . . . . . . . . 10 𝑍 ⊆ ℤ
12 zssre 12617 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 4004 . . . . . . . . 9 𝑍 ⊆ ℝ
1413a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑍 ⊆ ℝ)
15 simpl2 1191 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
16 ressxr 11302 . . . . . . . . 9 ℝ ⊆ ℝ*
17 fss 6752 . . . . . . . . 9 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝑍⟶ℝ*)
1815, 16, 17sylancl 586 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
19 pnfxr 11312 . . . . . . . . 9 +∞ ∈ ℝ*
2019a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → +∞ ∈ ℝ*)
214limsuplt 15511 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ* ∧ +∞ ∈ ℝ*) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
2214, 18, 20, 21syl3anc 1370 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
238, 22mpbid 232 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞)
24 fzfi 14009 . . . . . . . 8 (𝑀...(⌊‘𝑛)) ∈ Fin
2515adantr 480 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝐹:𝑍⟶ℝ)
26 elfzuz 13556 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚 ∈ (ℤ𝑀))
2726, 9eleqtrrdi 2849 . . . . . . . . . 10 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚𝑍)
28 ffvelcdm 7100 . . . . . . . . . 10 ((𝐹:𝑍⟶ℝ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℝ)
2925, 27, 28syl2an 596 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ 𝑚 ∈ (𝑀...(⌊‘𝑛))) → (𝐹𝑚) ∈ ℝ)
3029ralrimiva 3143 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ)
31 fimaxre3 12211 . . . . . . . 8 (((𝑀...(⌊‘𝑛)) ∈ Fin ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
3224, 30, 31sylancr 587 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
33 simpr 484 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
3433ad2antrr 726 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑎 ∈ ℝ)
354limsupgf 15507 . . . . . . . . . 10 𝐺:ℝ⟶ℝ*
3635ffvelcdmi 7102 . . . . . . . . 9 (𝑎 ∈ ℝ → (𝐺𝑎) ∈ ℝ*)
3734, 36syl 17 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ∈ ℝ*)
38 simprl 771 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3916, 38sselid 3992 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ*)
40 simprl 771 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝑛 ∈ ℝ)
4140adantr 480 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑛 ∈ ℝ)
4235ffvelcdmi 7102 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
4341, 42syl 17 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ∈ ℝ*)
4439, 43ifcld 4576 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
4519a1i 11 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → +∞ ∈ ℝ*)
4640ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑛 ∈ ℝ)
4713a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑍 ⊆ ℝ)
4847sselda 3994 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
4943xrleidd 13190 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ≤ (𝐺𝑛))
5018ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝐹:𝑍⟶ℝ*)
514limsupgle 15509 . . . . . . . . . . . . . . . . 17 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑛 ∈ ℝ ∧ (𝐺𝑛) ∈ ℝ*) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5247, 50, 41, 43, 51syl211anc 1375 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5349, 52mpbid 232 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5453r19.21bi 3248 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5554imp 406 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ (𝐺𝑛))
5646, 42syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ∈ ℝ*)
5739adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ∈ ℝ*)
58 xrmax1 13213 . . . . . . . . . . . . . . . 16 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
5956, 57, 58syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
6050ffvelcdmda 7103 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ∈ ℝ*)
6144adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
62 xrletr 13196 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ* ∧ (𝐺𝑛) ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6360, 56, 61, 62syl3anc 1370 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6459, 63mpan2d 694 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6564adantr 480 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6655, 65mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
67 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
6867breq1d 5157 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝐹𝑚) ≤ 𝑟 ↔ (𝐹𝑖) ≤ 𝑟))
69 simprr 773 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
7069ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
71 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖𝑍)
7271, 9eleqtrdi 2848 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
7341flcld 13834 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (⌊‘𝑛) ∈ ℤ)
7473adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (⌊‘𝑛) ∈ ℤ)
75 elfz5 13552 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (ℤ𝑀) ∧ (⌊‘𝑛) ∈ ℤ) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7672, 74, 75syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7711, 71sselid 3992 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
78 flge 13841 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ ℤ) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
7946, 77, 78syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
8076, 79bitr4d 282 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖𝑛))
8180biimpar 477 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → 𝑖 ∈ (𝑀...(⌊‘𝑛)))
8268, 70, 81rspcdva 3622 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ 𝑟)
83 xrmax2 13214 . . . . . . . . . . . . . . . . 17 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8443, 39, 83syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8584adantr 480 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
86 xrletr 13196 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ*𝑟 ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8760, 57, 61, 86syl3anc 1370 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8885, 87mpan2d 694 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8988adantr 480 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9082, 89mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9146, 48, 66, 90lecasei 11364 . . . . . . . . . . 11 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9291a1d 25 . . . . . . . . . 10 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9392ralrimiva 3143 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
944limsupgle 15509 . . . . . . . . . 10 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑎 ∈ ℝ ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9547, 50, 34, 44, 94syl211anc 1375 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9693, 95mpbird 257 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9738ltpnfd 13160 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 < +∞)
98 simplrr 778 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) < +∞)
99 breq1 5150 . . . . . . . . . 10 (𝑟 = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → (𝑟 < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
100 breq1 5150 . . . . . . . . . 10 ((𝐺𝑛) = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → ((𝐺𝑛) < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
10199, 100ifboth 4569 . . . . . . . . 9 ((𝑟 < +∞ ∧ (𝐺𝑛) < +∞) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10297, 98, 101syl2anc 584 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10337, 44, 45, 96, 102xrlelttrd 13198 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) < +∞)
10432, 103rexlimddv 3158 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → (𝐺𝑎) < +∞)
10523, 104rexlimddv 3158 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) < +∞)
1067, 105eqbrtrrd 5171 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞)
107 imassrn 6090 . . . . . . . . 9 (𝐹 “ (𝑎[,)+∞)) ⊆ ran 𝐹
10815frnd 6744 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ran 𝐹 ⊆ ℝ)
109107, 108sstrid 4006 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ)
110109, 16sstrdi 4007 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ*)
111 dfss2 3980 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
112110, 111sylib 218 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
113112, 109eqsstrd 4033 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ)
114 simpl1 1190 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
115 flcl 13831 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (⌊‘𝑎) ∈ ℤ)
116115adantl 481 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (⌊‘𝑎) ∈ ℤ)
117116peano2zd 12722 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℤ)
118117, 114ifcld 4576 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ)
119114zred 12719 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℝ)
120117zred 12719 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℝ)
121 max1 13223 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
122119, 120, 121syl2anc 584 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
123 eluz2 12881 . . . . . . . . . . 11 (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀)))
124114, 118, 122, 123syl3anbrc 1342 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀))
125124, 9eleqtrrdi 2849 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ 𝑍)
12615fdmd 6746 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → dom 𝐹 = 𝑍)
127125, 126eleqtrrd 2841 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹)
128118zred 12719 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ)
129 fllep1 13837 . . . . . . . . . . 11 (𝑎 ∈ ℝ → 𝑎 ≤ ((⌊‘𝑎) + 1))
130129adantl 481 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ ((⌊‘𝑎) + 1))
131 max2 13225 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
132119, 120, 131syl2anc 584 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
13333, 120, 128, 130, 132letrd 11415 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
134 elicopnf 13481 . . . . . . . . . 10 (𝑎 ∈ ℝ → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
135134adantl 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
136128, 133, 135mpbir2and 713 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞))
137 inelcm 4470 . . . . . . . 8 ((if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹 ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞)) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
138127, 136, 137syl2anc 584 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
139 imadisj 6099 . . . . . . . 8 ((𝐹 “ (𝑎[,)+∞)) = ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) = ∅)
140139necon3bii 2990 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ≠ ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
141138, 140sylibr 234 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ≠ ∅)
142112, 141eqnetrd 3005 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅)
143 supxrre1 13368 . . . . 5 ((((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ ∧ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
144113, 142, 143syl2anc 584 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
145106, 144mpbird 257 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ)
1467, 145eqeltrd 2838 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) ∈ ℝ)
1473, 5, 146fmpt2d 7143 1 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cin 3961  wss 3962  c0 4338  ifcif 4530   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cima 5691  wf 6558  cfv 6562  (class class class)co 7430  Fincfn 8983  supcsup 9477  cr 11151  1c1 11153   + caddc 11155  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cz 12610  cuz 12875  [,)cico 13385  ...cfz 13543  cfl 13826  lim supclsp 15502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-ico 13389  df-fz 13544  df-fl 13828  df-limsup 15503
This theorem is referenced by:  mbflimsup  25714
  Copyright terms: Public domain W3C validator