MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Visualization version   GIF version

Theorem limsupgre 14928
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupgre.z 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
limsupgre ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem limsupgre
Dummy variables 𝑎 𝑖 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12617 . . . 4 < Or ℝ*
21supex 9000 . . 3 sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
32a1i 11 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
4 limsupval.1 . . 3 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
64limsupgval 14923 . . . 4 (𝑎 ∈ ℝ → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
76adantl 485 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
8 simpl3 1194 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (lim sup‘𝐹) < +∞)
9 limsupgre.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 uzssz 12345 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
119, 10eqsstri 3911 . . . . . . . . . 10 𝑍 ⊆ ℤ
12 zssre 12069 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3886 . . . . . . . . 9 𝑍 ⊆ ℝ
1413a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑍 ⊆ ℝ)
15 simpl2 1193 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
16 ressxr 10763 . . . . . . . . 9 ℝ ⊆ ℝ*
17 fss 6521 . . . . . . . . 9 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝑍⟶ℝ*)
1815, 16, 17sylancl 589 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
19 pnfxr 10773 . . . . . . . . 9 +∞ ∈ ℝ*
2019a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → +∞ ∈ ℝ*)
214limsuplt 14926 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ* ∧ +∞ ∈ ℝ*) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
2214, 18, 20, 21syl3anc 1372 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
238, 22mpbid 235 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞)
24 fzfi 13431 . . . . . . . 8 (𝑀...(⌊‘𝑛)) ∈ Fin
2515adantr 484 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝐹:𝑍⟶ℝ)
26 elfzuz 12994 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚 ∈ (ℤ𝑀))
2726, 9eleqtrrdi 2844 . . . . . . . . . 10 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚𝑍)
28 ffvelrn 6859 . . . . . . . . . 10 ((𝐹:𝑍⟶ℝ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℝ)
2925, 27, 28syl2an 599 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ 𝑚 ∈ (𝑀...(⌊‘𝑛))) → (𝐹𝑚) ∈ ℝ)
3029ralrimiva 3096 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ)
31 fimaxre3 11664 . . . . . . . 8 (((𝑀...(⌊‘𝑛)) ∈ Fin ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
3224, 30, 31sylancr 590 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
33 simpr 488 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
3433ad2antrr 726 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑎 ∈ ℝ)
354limsupgf 14922 . . . . . . . . . 10 𝐺:ℝ⟶ℝ*
3635ffvelrni 6860 . . . . . . . . 9 (𝑎 ∈ ℝ → (𝐺𝑎) ∈ ℝ*)
3734, 36syl 17 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ∈ ℝ*)
38 simprl 771 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3916, 38sseldi 3875 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ*)
40 simprl 771 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝑛 ∈ ℝ)
4140adantr 484 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑛 ∈ ℝ)
4235ffvelrni 6860 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
4341, 42syl 17 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ∈ ℝ*)
4439, 43ifcld 4460 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
4519a1i 11 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → +∞ ∈ ℝ*)
4640ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑛 ∈ ℝ)
4713a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑍 ⊆ ℝ)
4847sselda 3877 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
4943xrleidd 12628 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ≤ (𝐺𝑛))
5018ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝐹:𝑍⟶ℝ*)
514limsupgle 14924 . . . . . . . . . . . . . . . . 17 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑛 ∈ ℝ ∧ (𝐺𝑛) ∈ ℝ*) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5247, 50, 41, 43, 51syl211anc 1377 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5349, 52mpbid 235 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5453r19.21bi 3121 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5554imp 410 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ (𝐺𝑛))
5646, 42syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ∈ ℝ*)
5739adantr 484 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ∈ ℝ*)
58 xrmax1 12651 . . . . . . . . . . . . . . . 16 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
5956, 57, 58syl2anc 587 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
6050ffvelrnda 6861 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ∈ ℝ*)
6144adantr 484 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
62 xrletr 12634 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ* ∧ (𝐺𝑛) ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6360, 56, 61, 62syl3anc 1372 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6459, 63mpan2d 694 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6564adantr 484 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6655, 65mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
67 fveq2 6674 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
6867breq1d 5040 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝐹𝑚) ≤ 𝑟 ↔ (𝐹𝑖) ≤ 𝑟))
69 simprr 773 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
7069ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
71 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖𝑍)
7271, 9eleqtrdi 2843 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
7341flcld 13259 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (⌊‘𝑛) ∈ ℤ)
7473adantr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (⌊‘𝑛) ∈ ℤ)
75 elfz5 12990 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (ℤ𝑀) ∧ (⌊‘𝑛) ∈ ℤ) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7672, 74, 75syl2anc 587 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7711, 71sseldi 3875 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
78 flge 13266 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ ℤ) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
7946, 77, 78syl2anc 587 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
8076, 79bitr4d 285 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖𝑛))
8180biimpar 481 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → 𝑖 ∈ (𝑀...(⌊‘𝑛)))
8268, 70, 81rspcdva 3528 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ 𝑟)
83 xrmax2 12652 . . . . . . . . . . . . . . . . 17 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8443, 39, 83syl2anc 587 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8584adantr 484 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
86 xrletr 12634 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ*𝑟 ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8760, 57, 61, 86syl3anc 1372 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8885, 87mpan2d 694 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8988adantr 484 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9082, 89mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9146, 48, 66, 90lecasei 10824 . . . . . . . . . . 11 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9291a1d 25 . . . . . . . . . 10 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9392ralrimiva 3096 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
944limsupgle 14924 . . . . . . . . . 10 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑎 ∈ ℝ ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9547, 50, 34, 44, 94syl211anc 1377 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9693, 95mpbird 260 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9738ltpnfd 12599 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 < +∞)
98 simplrr 778 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) < +∞)
99 breq1 5033 . . . . . . . . . 10 (𝑟 = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → (𝑟 < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
100 breq1 5033 . . . . . . . . . 10 ((𝐺𝑛) = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → ((𝐺𝑛) < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
10199, 100ifboth 4453 . . . . . . . . 9 ((𝑟 < +∞ ∧ (𝐺𝑛) < +∞) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10297, 98, 101syl2anc 587 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10337, 44, 45, 96, 102xrlelttrd 12636 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) < +∞)
10432, 103rexlimddv 3201 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → (𝐺𝑎) < +∞)
10523, 104rexlimddv 3201 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) < +∞)
1067, 105eqbrtrrd 5054 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞)
107 imassrn 5914 . . . . . . . . 9 (𝐹 “ (𝑎[,)+∞)) ⊆ ran 𝐹
10815frnd 6512 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ran 𝐹 ⊆ ℝ)
109107, 108sstrid 3888 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ)
110109, 16sstrdi 3889 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ*)
111 df-ss 3860 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
112110, 111sylib 221 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
113112, 109eqsstrd 3915 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ)
114 simpl1 1192 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
115 flcl 13256 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (⌊‘𝑎) ∈ ℤ)
116115adantl 485 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (⌊‘𝑎) ∈ ℤ)
117116peano2zd 12171 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℤ)
118117, 114ifcld 4460 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ)
119114zred 12168 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℝ)
120117zred 12168 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℝ)
121 max1 12661 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
122119, 120, 121syl2anc 587 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
123 eluz2 12330 . . . . . . . . . . 11 (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀)))
124114, 118, 122, 123syl3anbrc 1344 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀))
125124, 9eleqtrrdi 2844 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ 𝑍)
12615fdmd 6515 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → dom 𝐹 = 𝑍)
127125, 126eleqtrrd 2836 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹)
128118zred 12168 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ)
129 fllep1 13262 . . . . . . . . . . 11 (𝑎 ∈ ℝ → 𝑎 ≤ ((⌊‘𝑎) + 1))
130129adantl 485 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ ((⌊‘𝑎) + 1))
131 max2 12663 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
132119, 120, 131syl2anc 587 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
13333, 120, 128, 130, 132letrd 10875 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
134 elicopnf 12919 . . . . . . . . . 10 (𝑎 ∈ ℝ → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
135134adantl 485 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
136128, 133, 135mpbir2and 713 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞))
137 inelcm 4354 . . . . . . . 8 ((if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹 ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞)) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
138127, 136, 137syl2anc 587 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
139 imadisj 5922 . . . . . . . 8 ((𝐹 “ (𝑎[,)+∞)) = ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) = ∅)
140139necon3bii 2986 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ≠ ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
141138, 140sylibr 237 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ≠ ∅)
142112, 141eqnetrd 3001 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅)
143 supxrre1 12806 . . . . 5 ((((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ ∧ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
144113, 142, 143syl2anc 587 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
145106, 144mpbird 260 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ)
1467, 145eqeltrd 2833 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) ∈ ℝ)
1473, 5, 146fmpt2d 6897 1 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  Vcvv 3398  cin 3842  wss 3843  c0 4211  ifcif 4414   class class class wbr 5030  cmpt 5110  dom cdm 5525  ran crn 5526  cima 5528  wf 6335  cfv 6339  (class class class)co 7170  Fincfn 8555  supcsup 8977  cr 10614  1c1 10616   + caddc 10618  +∞cpnf 10750  *cxr 10752   < clt 10753  cle 10754  cz 12062  cuz 12324  [,)cico 12823  ...cfz 12981  cfl 13251  lim supclsp 14917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-ico 12827  df-fz 12982  df-fl 13253  df-limsup 14918
This theorem is referenced by:  mbflimsup  24418
  Copyright terms: Public domain W3C validator