MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Visualization version   GIF version

Theorem limsupgre 15429
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (π‘˜ ∈ ℝ ↦ sup(((𝐹 β€œ (π‘˜[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupgre.z 𝑍 = (β„€β‰₯β€˜π‘€)
Assertion
Ref Expression
limsupgre ((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) β†’ 𝐺:β„βŸΆβ„)
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝑀   π‘˜,𝑍
Allowed substitution hint:   𝐺(π‘˜)

Proof of Theorem limsupgre
Dummy variables π‘Ž 𝑖 π‘š 𝑛 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13124 . . . 4 < Or ℝ*
21supex 9460 . . 3 sup(((𝐹 β€œ (π‘˜[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
32a1i 11 . 2 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘˜ ∈ ℝ) β†’ sup(((𝐹 β€œ (π‘˜[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
4 limsupval.1 . . 3 𝐺 = (π‘˜ ∈ ℝ ↦ sup(((𝐹 β€œ (π‘˜[,)+∞)) ∩ ℝ*), ℝ*, < ))
54a1i 11 . 2 ((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) β†’ 𝐺 = (π‘˜ ∈ ℝ ↦ sup(((𝐹 β€œ (π‘˜[,)+∞)) ∩ ℝ*), ℝ*, < )))
64limsupgval 15424 . . . 4 (π‘Ž ∈ ℝ β†’ (πΊβ€˜π‘Ž) = sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ))
76adantl 480 . . 3 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (πΊβ€˜π‘Ž) = sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ))
8 simpl3 1191 . . . . . . 7 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (lim supβ€˜πΉ) < +∞)
9 limsupgre.z . . . . . . . . . . 11 𝑍 = (β„€β‰₯β€˜π‘€)
10 uzssz 12847 . . . . . . . . . . 11 (β„€β‰₯β€˜π‘€) βŠ† β„€
119, 10eqsstri 4015 . . . . . . . . . 10 𝑍 βŠ† β„€
12 zssre 12569 . . . . . . . . . 10 β„€ βŠ† ℝ
1311, 12sstri 3990 . . . . . . . . 9 𝑍 βŠ† ℝ
1413a1i 11 . . . . . . . 8 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ 𝑍 βŠ† ℝ)
15 simpl2 1190 . . . . . . . . 9 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ 𝐹:π‘βŸΆβ„)
16 ressxr 11262 . . . . . . . . 9 ℝ βŠ† ℝ*
17 fss 6733 . . . . . . . . 9 ((𝐹:π‘βŸΆβ„ ∧ ℝ βŠ† ℝ*) β†’ 𝐹:π‘βŸΆβ„*)
1815, 16, 17sylancl 584 . . . . . . . 8 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ 𝐹:π‘βŸΆβ„*)
19 pnfxr 11272 . . . . . . . . 9 +∞ ∈ ℝ*
2019a1i 11 . . . . . . . 8 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ +∞ ∈ ℝ*)
214limsuplt 15427 . . . . . . . 8 ((𝑍 βŠ† ℝ ∧ 𝐹:π‘βŸΆβ„* ∧ +∞ ∈ ℝ*) β†’ ((lim supβ€˜πΉ) < +∞ ↔ βˆƒπ‘› ∈ ℝ (πΊβ€˜π‘›) < +∞))
2214, 18, 20, 21syl3anc 1369 . . . . . . 7 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ((lim supβ€˜πΉ) < +∞ ↔ βˆƒπ‘› ∈ ℝ (πΊβ€˜π‘›) < +∞))
238, 22mpbid 231 . . . . . 6 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ βˆƒπ‘› ∈ ℝ (πΊβ€˜π‘›) < +∞)
24 fzfi 13941 . . . . . . . 8 (𝑀...(βŒŠβ€˜π‘›)) ∈ Fin
2515adantr 479 . . . . . . . . . 10 ((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) β†’ 𝐹:π‘βŸΆβ„)
26 elfzuz 13501 . . . . . . . . . . 11 (π‘š ∈ (𝑀...(βŒŠβ€˜π‘›)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘€))
2726, 9eleqtrrdi 2842 . . . . . . . . . 10 (π‘š ∈ (𝑀...(βŒŠβ€˜π‘›)) β†’ π‘š ∈ 𝑍)
28 ffvelcdm 7082 . . . . . . . . . 10 ((𝐹:π‘βŸΆβ„ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š) ∈ ℝ)
2925, 27, 28syl2an 594 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))) β†’ (πΉβ€˜π‘š) ∈ ℝ)
3029ralrimiva 3144 . . . . . . . 8 ((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) β†’ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ∈ ℝ)
31 fimaxre3 12164 . . . . . . . 8 (((𝑀...(βŒŠβ€˜π‘›)) ∈ Fin ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ∈ ℝ) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)
3224, 30, 31sylancr 585 . . . . . . 7 ((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)
33 simpr 483 . . . . . . . . . 10 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ π‘Ž ∈ ℝ)
3433ad2antrr 722 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ π‘Ž ∈ ℝ)
354limsupgf 15423 . . . . . . . . . 10 𝐺:β„βŸΆβ„*
3635ffvelcdmi 7084 . . . . . . . . 9 (π‘Ž ∈ ℝ β†’ (πΊβ€˜π‘Ž) ∈ ℝ*)
3734, 36syl 17 . . . . . . . 8 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ (πΊβ€˜π‘Ž) ∈ ℝ*)
38 simprl 767 . . . . . . . . . 10 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ)
3916, 38sselid 3979 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ*)
40 simprl 767 . . . . . . . . . . 11 ((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) β†’ 𝑛 ∈ ℝ)
4140adantr 479 . . . . . . . . . 10 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ 𝑛 ∈ ℝ)
4235ffvelcdmi 7084 . . . . . . . . . 10 (𝑛 ∈ ℝ β†’ (πΊβ€˜π‘›) ∈ ℝ*)
4341, 42syl 17 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ (πΊβ€˜π‘›) ∈ ℝ*)
4439, 43ifcld 4573 . . . . . . . 8 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) ∈ ℝ*)
4519a1i 11 . . . . . . . 8 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ +∞ ∈ ℝ*)
4640ad2antrr 722 . . . . . . . . . . . 12 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ 𝑛 ∈ ℝ)
4713a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ 𝑍 βŠ† ℝ)
4847sselda 3981 . . . . . . . . . . . 12 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ 𝑖 ∈ ℝ)
4943xrleidd 13135 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ (πΊβ€˜π‘›) ≀ (πΊβ€˜π‘›))
5018ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ 𝐹:π‘βŸΆβ„*)
514limsupgle 15425 . . . . . . . . . . . . . . . . 17 (((𝑍 βŠ† ℝ ∧ 𝐹:π‘βŸΆβ„*) ∧ 𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) ∈ ℝ*) β†’ ((πΊβ€˜π‘›) ≀ (πΊβ€˜π‘›) ↔ βˆ€π‘– ∈ 𝑍 (𝑛 ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›))))
5247, 50, 41, 43, 51syl211anc 1374 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ ((πΊβ€˜π‘›) ≀ (πΊβ€˜π‘›) ↔ βˆ€π‘– ∈ 𝑍 (𝑛 ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›))))
5349, 52mpbid 231 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ βˆ€π‘– ∈ 𝑍 (𝑛 ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›)))
5453r19.21bi 3246 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (𝑛 ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›)))
5554imp 405 . . . . . . . . . . . . 13 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ≀ 𝑖) β†’ (πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›))
5646, 42syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (πΊβ€˜π‘›) ∈ ℝ*)
5739adantr 479 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ π‘Ÿ ∈ ℝ*)
58 xrmax1 13158 . . . . . . . . . . . . . . . 16 (((πΊβ€˜π‘›) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) β†’ (πΊβ€˜π‘›) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
5956, 57, 58syl2anc 582 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (πΊβ€˜π‘›) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
6050ffvelcdmda 7085 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (πΉβ€˜π‘–) ∈ ℝ*)
6144adantr 479 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) ∈ ℝ*)
62 xrletr 13141 . . . . . . . . . . . . . . . 16 (((πΉβ€˜π‘–) ∈ ℝ* ∧ (πΊβ€˜π‘›) ∈ ℝ* ∧ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) ∈ ℝ*) β†’ (((πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›) ∧ (πΊβ€˜π‘›) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
6360, 56, 61, 62syl3anc 1369 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (((πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›) ∧ (πΊβ€˜π‘›) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
6459, 63mpan2d 690 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ ((πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
6564adantr 479 . . . . . . . . . . . . 13 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ≀ 𝑖) β†’ ((πΉβ€˜π‘–) ≀ (πΊβ€˜π‘›) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
6655, 65mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ≀ 𝑖) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
67 fveq2 6890 . . . . . . . . . . . . . . 15 (π‘š = 𝑖 β†’ (πΉβ€˜π‘š) = (πΉβ€˜π‘–))
6867breq1d 5157 . . . . . . . . . . . . . 14 (π‘š = 𝑖 β†’ ((πΉβ€˜π‘š) ≀ π‘Ÿ ↔ (πΉβ€˜π‘–) ≀ π‘Ÿ))
69 simprr 769 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)
7069ad2antrr 722 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑖 ≀ 𝑛) β†’ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)
71 simpr 483 . . . . . . . . . . . . . . . . . 18 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ 𝑖 ∈ 𝑍)
7271, 9eleqtrdi 2841 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ 𝑖 ∈ (β„€β‰₯β€˜π‘€))
7341flcld 13767 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ (βŒŠβ€˜π‘›) ∈ β„€)
7473adantr 479 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (βŒŠβ€˜π‘›) ∈ β„€)
75 elfz5 13497 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (β„€β‰₯β€˜π‘€) ∧ (βŒŠβ€˜π‘›) ∈ β„€) β†’ (𝑖 ∈ (𝑀...(βŒŠβ€˜π‘›)) ↔ 𝑖 ≀ (βŒŠβ€˜π‘›)))
7672, 74, 75syl2anc 582 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (𝑖 ∈ (𝑀...(βŒŠβ€˜π‘›)) ↔ 𝑖 ≀ (βŒŠβ€˜π‘›)))
7711, 71sselid 3979 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ 𝑖 ∈ β„€)
78 flge 13774 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ≀ 𝑛 ↔ 𝑖 ≀ (βŒŠβ€˜π‘›)))
7946, 77, 78syl2anc 582 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (𝑖 ≀ 𝑛 ↔ 𝑖 ≀ (βŒŠβ€˜π‘›)))
8076, 79bitr4d 281 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (𝑖 ∈ (𝑀...(βŒŠβ€˜π‘›)) ↔ 𝑖 ≀ 𝑛))
8180biimpar 476 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑖 ≀ 𝑛) β†’ 𝑖 ∈ (𝑀...(βŒŠβ€˜π‘›)))
8268, 70, 81rspcdva 3612 . . . . . . . . . . . . 13 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑖 ≀ 𝑛) β†’ (πΉβ€˜π‘–) ≀ π‘Ÿ)
83 xrmax2 13159 . . . . . . . . . . . . . . . . 17 (((πΊβ€˜π‘›) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) β†’ π‘Ÿ ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
8443, 39, 83syl2anc 582 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ π‘Ÿ ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
8584adantr 479 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ π‘Ÿ ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
86 xrletr 13141 . . . . . . . . . . . . . . . 16 (((πΉβ€˜π‘–) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ* ∧ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) ∈ ℝ*) β†’ (((πΉβ€˜π‘–) ≀ π‘Ÿ ∧ π‘Ÿ ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
8760, 57, 61, 86syl3anc 1369 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (((πΉβ€˜π‘–) ≀ π‘Ÿ ∧ π‘Ÿ ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
8885, 87mpan2d 690 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ ((πΉβ€˜π‘–) ≀ π‘Ÿ β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
8988adantr 479 . . . . . . . . . . . . 13 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑖 ≀ 𝑛) β†’ ((πΉβ€˜π‘–) ≀ π‘Ÿ β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
9082, 89mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) ∧ 𝑖 ≀ 𝑛) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
9146, 48, 66, 90lecasei 11324 . . . . . . . . . . 11 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
9291a1d 25 . . . . . . . . . 10 ((((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) ∧ 𝑖 ∈ 𝑍) β†’ (π‘Ž ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
9392ralrimiva 3144 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ βˆ€π‘– ∈ 𝑍 (π‘Ž ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›))))
944limsupgle 15425 . . . . . . . . . 10 (((𝑍 βŠ† ℝ ∧ 𝐹:π‘βŸΆβ„*) ∧ π‘Ž ∈ ℝ ∧ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) ∈ ℝ*) β†’ ((πΊβ€˜π‘Ž) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) ↔ βˆ€π‘– ∈ 𝑍 (π‘Ž ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))))
9547, 50, 34, 44, 94syl211anc 1374 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ ((πΊβ€˜π‘Ž) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) ↔ βˆ€π‘– ∈ 𝑍 (π‘Ž ≀ 𝑖 β†’ (πΉβ€˜π‘–) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))))
9693, 95mpbird 256 . . . . . . . 8 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ (πΊβ€˜π‘Ž) ≀ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)))
9738ltpnfd 13105 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ π‘Ÿ < +∞)
98 simplrr 774 . . . . . . . . 9 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ (πΊβ€˜π‘›) < +∞)
99 breq1 5150 . . . . . . . . . 10 (π‘Ÿ = if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) β†’ (π‘Ÿ < +∞ ↔ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) < +∞))
100 breq1 5150 . . . . . . . . . 10 ((πΊβ€˜π‘›) = if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) β†’ ((πΊβ€˜π‘›) < +∞ ↔ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) < +∞))
10199, 100ifboth 4566 . . . . . . . . 9 ((π‘Ÿ < +∞ ∧ (πΊβ€˜π‘›) < +∞) β†’ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) < +∞)
10297, 98, 101syl2anc 582 . . . . . . . 8 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ if((πΊβ€˜π‘›) ≀ π‘Ÿ, π‘Ÿ, (πΊβ€˜π‘›)) < +∞)
10337, 44, 45, 96, 102xrlelttrd 13143 . . . . . . 7 (((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘š ∈ (𝑀...(βŒŠβ€˜π‘›))(πΉβ€˜π‘š) ≀ π‘Ÿ)) β†’ (πΊβ€˜π‘Ž) < +∞)
10432, 103rexlimddv 3159 . . . . . 6 ((((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (πΊβ€˜π‘›) < +∞)) β†’ (πΊβ€˜π‘Ž) < +∞)
10523, 104rexlimddv 3159 . . . . 5 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (πΊβ€˜π‘Ž) < +∞)
1067, 105eqbrtrrd 5171 . . . 4 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞)
107 imassrn 6069 . . . . . . . . 9 (𝐹 β€œ (π‘Ž[,)+∞)) βŠ† ran 𝐹
10815frnd 6724 . . . . . . . . 9 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ran 𝐹 βŠ† ℝ)
109107, 108sstrid 3992 . . . . . . . 8 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (𝐹 β€œ (π‘Ž[,)+∞)) βŠ† ℝ)
110109, 16sstrdi 3993 . . . . . . 7 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (𝐹 β€œ (π‘Ž[,)+∞)) βŠ† ℝ*)
111 df-ss 3964 . . . . . . 7 ((𝐹 β€œ (π‘Ž[,)+∞)) βŠ† ℝ* ↔ ((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*) = (𝐹 β€œ (π‘Ž[,)+∞)))
112110, 111sylib 217 . . . . . 6 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*) = (𝐹 β€œ (π‘Ž[,)+∞)))
113112, 109eqsstrd 4019 . . . . 5 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*) βŠ† ℝ)
114 simpl1 1189 . . . . . . . . . . 11 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ 𝑀 ∈ β„€)
115 flcl 13764 . . . . . . . . . . . . . 14 (π‘Ž ∈ ℝ β†’ (βŒŠβ€˜π‘Ž) ∈ β„€)
116115adantl 480 . . . . . . . . . . . . 13 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (βŒŠβ€˜π‘Ž) ∈ β„€)
117116peano2zd 12673 . . . . . . . . . . . 12 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ((βŒŠβ€˜π‘Ž) + 1) ∈ β„€)
118117, 114ifcld 4573 . . . . . . . . . . 11 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ β„€)
119114zred 12670 . . . . . . . . . . . 12 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ 𝑀 ∈ ℝ)
120117zred 12670 . . . . . . . . . . . 12 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ((βŒŠβ€˜π‘Ž) + 1) ∈ ℝ)
121 max1 13168 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ ((βŒŠβ€˜π‘Ž) + 1) ∈ ℝ) β†’ 𝑀 ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀))
122119, 120, 121syl2anc 582 . . . . . . . . . . 11 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ 𝑀 ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀))
123 eluz2 12832 . . . . . . . . . . 11 (if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ (β„€β‰₯β€˜π‘€) ↔ (𝑀 ∈ β„€ ∧ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ β„€ ∧ 𝑀 ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀)))
124114, 118, 122, 123syl3anbrc 1341 . . . . . . . . . 10 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ (β„€β‰₯β€˜π‘€))
125124, 9eleqtrrdi 2842 . . . . . . . . 9 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ 𝑍)
12615fdmd 6727 . . . . . . . . 9 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ dom 𝐹 = 𝑍)
127125, 126eleqtrrd 2834 . . . . . . . 8 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ dom 𝐹)
128118zred 12670 . . . . . . . . 9 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ ℝ)
129 fllep1 13770 . . . . . . . . . . 11 (π‘Ž ∈ ℝ β†’ π‘Ž ≀ ((βŒŠβ€˜π‘Ž) + 1))
130129adantl 480 . . . . . . . . . 10 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ π‘Ž ≀ ((βŒŠβ€˜π‘Ž) + 1))
131 max2 13170 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ ((βŒŠβ€˜π‘Ž) + 1) ∈ ℝ) β†’ ((βŒŠβ€˜π‘Ž) + 1) ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀))
132119, 120, 131syl2anc 582 . . . . . . . . . 10 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ((βŒŠβ€˜π‘Ž) + 1) ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀))
13333, 120, 128, 130, 132letrd 11375 . . . . . . . . 9 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ π‘Ž ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀))
134 elicopnf 13426 . . . . . . . . . 10 (π‘Ž ∈ ℝ β†’ (if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ (π‘Ž[,)+∞) ↔ (if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ ℝ ∧ π‘Ž ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀))))
135134adantl 480 . . . . . . . . 9 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ (π‘Ž[,)+∞) ↔ (if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ ℝ ∧ π‘Ž ≀ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀))))
136128, 133, 135mpbir2and 709 . . . . . . . 8 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ (π‘Ž[,)+∞))
137 inelcm 4463 . . . . . . . 8 ((if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ dom 𝐹 ∧ if(𝑀 ≀ ((βŒŠβ€˜π‘Ž) + 1), ((βŒŠβ€˜π‘Ž) + 1), 𝑀) ∈ (π‘Ž[,)+∞)) β†’ (dom 𝐹 ∩ (π‘Ž[,)+∞)) β‰  βˆ…)
138127, 136, 137syl2anc 582 . . . . . . 7 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (dom 𝐹 ∩ (π‘Ž[,)+∞)) β‰  βˆ…)
139 imadisj 6078 . . . . . . . 8 ((𝐹 β€œ (π‘Ž[,)+∞)) = βˆ… ↔ (dom 𝐹 ∩ (π‘Ž[,)+∞)) = βˆ…)
140139necon3bii 2991 . . . . . . 7 ((𝐹 β€œ (π‘Ž[,)+∞)) β‰  βˆ… ↔ (dom 𝐹 ∩ (π‘Ž[,)+∞)) β‰  βˆ…)
141138, 140sylibr 233 . . . . . 6 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (𝐹 β€œ (π‘Ž[,)+∞)) β‰  βˆ…)
142112, 141eqnetrd 3006 . . . . 5 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ ((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*) β‰  βˆ…)
143 supxrre1 13313 . . . . 5 ((((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*) βŠ† ℝ ∧ ((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*) β‰  βˆ…) β†’ (sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
144113, 142, 143syl2anc 582 . . . 4 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
145106, 144mpbird 256 . . 3 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ sup(((𝐹 β€œ (π‘Ž[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ)
1467, 145eqeltrd 2831 . 2 (((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) ∧ π‘Ž ∈ ℝ) β†’ (πΊβ€˜π‘Ž) ∈ ℝ)
1473, 5, 146fmpt2d 7124 1 ((𝑀 ∈ β„€ ∧ 𝐹:π‘βŸΆβ„ ∧ (lim supβ€˜πΉ) < +∞) β†’ 𝐺:β„βŸΆβ„)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  Vcvv 3472   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  ran crn 5676   β€œ cima 5678  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  Fincfn 8941  supcsup 9437  β„cr 11111  1c1 11113   + caddc 11115  +∞cpnf 11249  β„*cxr 11251   < clt 11252   ≀ cle 11253  β„€cz 12562  β„€β‰₯cuz 12826  [,)cico 13330  ...cfz 13488  βŒŠcfl 13759  lim supclsp 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-ico 13334  df-fz 13489  df-fl 13761  df-limsup 15419
This theorem is referenced by:  mbflimsup  25415
  Copyright terms: Public domain W3C validator