MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Visualization version   GIF version

Theorem limsupgre 14511
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
limsupgre.z 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
limsupgre ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem limsupgre
Dummy variables 𝑎 𝑖 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12179 . . . 4 < Or ℝ*
21supex 8580 . . 3 sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
32a1i 11 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
4 limsupval.1 . . 3 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
64limsupgval 14506 . . . 4 (𝑎 ∈ ℝ → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
76adantl 473 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) = sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ))
8 simpl3 1246 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (lim sup‘𝐹) < +∞)
9 limsupgre.z . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 uzssz 11911 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
119, 10eqsstri 3797 . . . . . . . . . 10 𝑍 ⊆ ℤ
12 zssre 11635 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3772 . . . . . . . . 9 𝑍 ⊆ ℝ
1413a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑍 ⊆ ℝ)
15 simpl2 1244 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
16 ressxr 10341 . . . . . . . . 9 ℝ ⊆ ℝ*
17 fss 6238 . . . . . . . . 9 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝑍⟶ℝ*)
1815, 16, 17sylancl 580 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
19 pnfxr 10350 . . . . . . . . 9 +∞ ∈ ℝ*
2019a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → +∞ ∈ ℝ*)
214limsuplt 14509 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ* ∧ +∞ ∈ ℝ*) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
2214, 18, 20, 21syl3anc 1490 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((lim sup‘𝐹) < +∞ ↔ ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞))
238, 22mpbid 223 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ∃𝑛 ∈ ℝ (𝐺𝑛) < +∞)
24 fzfi 12984 . . . . . . . 8 (𝑀...(⌊‘𝑛)) ∈ Fin
2515adantr 472 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝐹:𝑍⟶ℝ)
26 elfzuz 12550 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚 ∈ (ℤ𝑀))
2726, 9syl6eleqr 2855 . . . . . . . . . 10 (𝑚 ∈ (𝑀...(⌊‘𝑛)) → 𝑚𝑍)
28 ffvelrn 6551 . . . . . . . . . 10 ((𝐹:𝑍⟶ℝ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℝ)
2925, 27, 28syl2an 589 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ 𝑚 ∈ (𝑀...(⌊‘𝑛))) → (𝐹𝑚) ∈ ℝ)
3029ralrimiva 3113 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ)
31 fimaxre3 11228 . . . . . . . 8 (((𝑀...(⌊‘𝑛)) ∈ Fin ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
3224, 30, 31sylancr 581 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → ∃𝑟 ∈ ℝ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
33 simpr 477 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
3433ad2antrr 717 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑎 ∈ ℝ)
354limsupgf 14505 . . . . . . . . . 10 𝐺:ℝ⟶ℝ*
3635ffvelrni 6552 . . . . . . . . 9 (𝑎 ∈ ℝ → (𝐺𝑎) ∈ ℝ*)
3734, 36syl 17 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ∈ ℝ*)
38 simprl 787 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3916, 38sseldi 3761 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ∈ ℝ*)
40 simprl 787 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → 𝑛 ∈ ℝ)
4140adantr 472 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑛 ∈ ℝ)
4235ffvelrni 6552 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝐺𝑛) ∈ ℝ*)
4341, 42syl 17 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ∈ ℝ*)
4439, 43ifcld 4290 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
4519a1i 11 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → +∞ ∈ ℝ*)
4640ad2antrr 717 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑛 ∈ ℝ)
4713a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑍 ⊆ ℝ)
4847sselda 3763 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
4943xrleidd 12190 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) ≤ (𝐺𝑛))
5018ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝐹:𝑍⟶ℝ*)
514limsupgle 14507 . . . . . . . . . . . . . . . . 17 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑛 ∈ ℝ ∧ (𝐺𝑛) ∈ ℝ*) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5247, 50, 41, 43, 51syl211anc 1495 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑛) ≤ (𝐺𝑛) ↔ ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛))))
5349, 52mpbid 223 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5453r19.21bi 3079 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑛𝑖 → (𝐹𝑖) ≤ (𝐺𝑛)))
5554imp 395 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ (𝐺𝑛))
5646, 42syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ∈ ℝ*)
5739adantr 472 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ∈ ℝ*)
58 xrmax1 12213 . . . . . . . . . . . . . . . 16 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
5956, 57, 58syl2anc 579 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
6050ffvelrnda 6553 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ∈ ℝ*)
6144adantr 472 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*)
62 xrletr 12196 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ* ∧ (𝐺𝑛) ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6360, 56, 61, 62syl3anc 1490 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ (𝐺𝑛) ∧ (𝐺𝑛) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6459, 63mpan2d 685 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6564adantr 472 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → ((𝐹𝑖) ≤ (𝐺𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
6655, 65mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑛𝑖) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
67 fveq2 6379 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
6867breq1d 4821 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝐹𝑚) ≤ 𝑟 ↔ (𝐹𝑖) ≤ 𝑟))
69 simprr 789 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
7069ad2antrr 717 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)
71 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖𝑍)
7271, 9syl6eleq 2854 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
7341flcld 12812 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (⌊‘𝑛) ∈ ℤ)
7473adantr 472 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (⌊‘𝑛) ∈ ℤ)
75 elfz5 12546 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (ℤ𝑀) ∧ (⌊‘𝑛) ∈ ℤ) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7672, 74, 75syl2anc 579 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖 ≤ (⌊‘𝑛)))
7711, 71sseldi 3761 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
78 flge 12819 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ ℤ) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
7946, 77, 78syl2anc 579 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖𝑛𝑖 ≤ (⌊‘𝑛)))
8076, 79bitr4d 273 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑖 ∈ (𝑀...(⌊‘𝑛)) ↔ 𝑖𝑛))
8180biimpar 469 . . . . . . . . . . . . . 14 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → 𝑖 ∈ (𝑀...(⌊‘𝑛)))
8268, 70, 81rspcdva 3468 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ 𝑟)
83 xrmax2 12214 . . . . . . . . . . . . . . . . 17 (((𝐺𝑛) ∈ ℝ*𝑟 ∈ ℝ*) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8443, 39, 83syl2anc 579 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
8584adantr 472 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → 𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
86 xrletr 12196 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ ℝ*𝑟 ∈ ℝ* ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8760, 57, 61, 86syl3anc 1490 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (((𝐹𝑖) ≤ 𝑟𝑟 ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8885, 87mpan2d 685 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
8988adantr 472 . . . . . . . . . . . . 13 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → ((𝐹𝑖) ≤ 𝑟 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9082, 89mpd 15 . . . . . . . . . . . 12 (((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) ∧ 𝑖𝑛) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9146, 48, 66, 90lecasei 10401 . . . . . . . . . . 11 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9291a1d 25 . . . . . . . . . 10 ((((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) ∧ 𝑖𝑍) → (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
9392ralrimiva 3113 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛))))
944limsupgle 14507 . . . . . . . . . 10 (((𝑍 ⊆ ℝ ∧ 𝐹:𝑍⟶ℝ*) ∧ 𝑎 ∈ ℝ ∧ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ∈ ℝ*) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9547, 50, 34, 44, 94syl211anc 1495 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → ((𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) ↔ ∀𝑖𝑍 (𝑎𝑖 → (𝐹𝑖) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))))
9693, 95mpbird 248 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) ≤ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)))
9738ltpnfd 12160 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → 𝑟 < +∞)
98 simplrr 796 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑛) < +∞)
99 breq1 4814 . . . . . . . . . 10 (𝑟 = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → (𝑟 < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
100 breq1 4814 . . . . . . . . . 10 ((𝐺𝑛) = if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) → ((𝐺𝑛) < +∞ ↔ if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞))
10199, 100ifboth 4283 . . . . . . . . 9 ((𝑟 < +∞ ∧ (𝐺𝑛) < +∞) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10297, 98, 101syl2anc 579 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → if((𝐺𝑛) ≤ 𝑟, 𝑟, (𝐺𝑛)) < +∞)
10337, 44, 45, 96, 102xrlelttrd 12198 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) ∧ (𝑟 ∈ ℝ ∧ ∀𝑚 ∈ (𝑀...(⌊‘𝑛))(𝐹𝑚) ≤ 𝑟)) → (𝐺𝑎) < +∞)
10432, 103rexlimddv 3182 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) ∧ (𝑛 ∈ ℝ ∧ (𝐺𝑛) < +∞)) → (𝐺𝑎) < +∞)
10523, 104rexlimddv 3182 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) < +∞)
1067, 105eqbrtrrd 4835 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞)
107 imassrn 5661 . . . . . . . . 9 (𝐹 “ (𝑎[,)+∞)) ⊆ ran 𝐹
10815frnd 6232 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ran 𝐹 ⊆ ℝ)
109107, 108syl5ss 3774 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ)
110109, 16syl6ss 3775 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ⊆ ℝ*)
111 df-ss 3748 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
112110, 111sylib 209 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑎[,)+∞)))
113112, 109eqsstrd 3801 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ)
114 simpl1 1242 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
115 flcl 12809 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (⌊‘𝑎) ∈ ℤ)
116115adantl 473 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (⌊‘𝑎) ∈ ℤ)
117116peano2zd 11737 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℤ)
118117, 114ifcld 4290 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ)
119114zred 11734 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℝ)
120117zred 11734 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ∈ ℝ)
121 max1 12223 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
122119, 120, 121syl2anc 579 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
123 eluz2 11897 . . . . . . . . . . 11 (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀)))
124114, 118, 122, 123syl3anbrc 1443 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (ℤ𝑀))
125124, 9syl6eleqr 2855 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ 𝑍)
12615fdmd 6234 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → dom 𝐹 = 𝑍)
127125, 126eleqtrrd 2847 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹)
128118zred 11734 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ)
129 fllep1 12815 . . . . . . . . . . 11 (𝑎 ∈ ℝ → 𝑎 ≤ ((⌊‘𝑎) + 1))
130129adantl 473 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ ((⌊‘𝑎) + 1))
131 max2 12225 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑎) + 1) ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
132119, 120, 131syl2anc 579 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((⌊‘𝑎) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
13333, 120, 128, 130, 132letrd 10452 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))
134 elicopnf 12477 . . . . . . . . . 10 (𝑎 ∈ ℝ → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
135134adantl 473 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞) ↔ (if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ ℝ ∧ 𝑎 ≤ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀))))
136128, 133, 135mpbir2and 704 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞))
137 inelcm 4195 . . . . . . . 8 ((if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ dom 𝐹 ∧ if(𝑀 ≤ ((⌊‘𝑎) + 1), ((⌊‘𝑎) + 1), 𝑀) ∈ (𝑎[,)+∞)) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
138127, 136, 137syl2anc 579 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
139 imadisj 5668 . . . . . . . 8 ((𝐹 “ (𝑎[,)+∞)) = ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) = ∅)
140139necon3bii 2989 . . . . . . 7 ((𝐹 “ (𝑎[,)+∞)) ≠ ∅ ↔ (dom 𝐹 ∩ (𝑎[,)+∞)) ≠ ∅)
141138, 140sylibr 225 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (𝑎[,)+∞)) ≠ ∅)
142112, 141eqnetrd 3004 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅)
143 supxrre1 12367 . . . . 5 ((((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ⊆ ℝ ∧ ((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*) ≠ ∅) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
144113, 142, 143syl2anc 579 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ ↔ sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) < +∞))
145106, 144mpbird 248 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → sup(((𝐹 “ (𝑎[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ)
1467, 145eqeltrd 2844 . 2 (((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) ∧ 𝑎 ∈ ℝ) → (𝐺𝑎) ∈ ℝ)
1473, 5, 146fmpt2d 6587 1 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cin 3733  wss 3734  c0 4081  ifcif 4245   class class class wbr 4811  cmpt 4890  dom cdm 5279  ran crn 5280  cima 5282  wf 6066  cfv 6070  (class class class)co 6846  Fincfn 8164  supcsup 8557  cr 10192  1c1 10194   + caddc 10196  +∞cpnf 10329  *cxr 10331   < clt 10332  cle 10333  cz 11628  cuz 11891  [,)cico 12384  ...cfz 12538  cfl 12804  lim supclsp 14500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-n0 11543  df-z 11629  df-uz 11892  df-ico 12388  df-fz 12539  df-fl 12806  df-limsup 14501
This theorem is referenced by:  mbflimsup  23738
  Copyright terms: Public domain W3C validator