MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd1 Structured version   Visualization version   GIF version

Theorem limsupbnd1 14498
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / 𝑛 which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupbnd.1 (𝜑𝐵 ⊆ ℝ)
limsupbnd.2 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd.3 (𝜑𝐴 ∈ ℝ*)
limsupbnd1.4 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘

Proof of Theorem limsupbnd1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 limsupbnd1.4 . 2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
2 limsupbnd.1 . . . . . 6 (𝜑𝐵 ⊆ ℝ)
32adantr 472 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
4 limsupbnd.2 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ*)
54adantr 472 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐹:𝐵⟶ℝ*)
6 simpr 477 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
7 limsupbnd.3 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
87adantr 472 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐴 ∈ ℝ*)
9 eqid 2765 . . . . . 6 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
109limsupgle 14493 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝑘 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴)))
113, 5, 6, 8, 10syl211anc 1495 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴)))
12 reex 10280 . . . . . . . . . . . 12 ℝ ∈ V
1312ssex 4963 . . . . . . . . . . 11 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
142, 13syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
15 xrex 12025 . . . . . . . . . . 11 * ∈ V
1615a1i 11 . . . . . . . . . 10 (𝜑 → ℝ* ∈ V)
17 fex2 7319 . . . . . . . . . 10 ((𝐹:𝐵⟶ℝ*𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V)
184, 14, 16, 17syl3anc 1490 . . . . . . . . 9 (𝜑𝐹 ∈ V)
19 limsupcl 14489 . . . . . . . . 9 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
2018, 19syl 17 . . . . . . . 8 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
2120xrleidd 12185 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim sup‘𝐹))
229limsuple 14494 . . . . . . . 8 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ (lim sup‘𝐹) ∈ ℝ*) → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘)))
232, 4, 20, 22syl3anc 1490 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘)))
2421, 23mpbid 223 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘))
2524r19.21bi 3079 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘))
2620adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ*)
279limsupgf 14491 . . . . . . . 8 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
2827a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*)
2928ffvelrnda 6549 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∈ ℝ*)
30 xrletr 12191 . . . . . 6 (((lim sup‘𝐹) ∈ ℝ* ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∈ ℝ*𝐴 ∈ ℝ*) → (((lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3126, 29, 8, 30syl3anc 1490 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (((lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3225, 31mpand 686 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 → (lim sup‘𝐹) ≤ 𝐴))
3311, 32sylbird 251 . . 3 ((𝜑𝑘 ∈ ℝ) → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3433rexlimdva 3178 . 2 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
351, 34mpd 15 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  cin 3731  wss 3732   class class class wbr 4809  cmpt 4888  cima 5280  wf 6064  cfv 6068  (class class class)co 6842  supcsup 8553  cr 10188  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  [,)cico 12379  lim supclsp 14486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-ico 12383  df-limsup 14487
This theorem is referenced by:  caucvgrlem  14688  limsupre  40511  limsupbnd1f  40556
  Copyright terms: Public domain W3C validator