MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd1 Structured version   Visualization version   GIF version

Theorem limsupbnd1 14841
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / 𝑛 which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupbnd.1 (𝜑𝐵 ⊆ ℝ)
limsupbnd.2 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd.3 (𝜑𝐴 ∈ ℝ*)
limsupbnd1.4 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘

Proof of Theorem limsupbnd1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 limsupbnd1.4 . 2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
2 limsupbnd.1 . . . . . 6 (𝜑𝐵 ⊆ ℝ)
32adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
4 limsupbnd.2 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ*)
54adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐹:𝐵⟶ℝ*)
6 simpr 487 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
7 limsupbnd.3 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
87adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℝ) → 𝐴 ∈ ℝ*)
9 eqid 2823 . . . . . 6 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
109limsupgle 14836 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝑘 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴)))
113, 5, 6, 8, 10syl211anc 1372 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴)))
12 reex 10630 . . . . . . . . . . . 12 ℝ ∈ V
1312ssex 5227 . . . . . . . . . . 11 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
142, 13syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
15 xrex 12389 . . . . . . . . . . 11 * ∈ V
1615a1i 11 . . . . . . . . . 10 (𝜑 → ℝ* ∈ V)
17 fex2 7640 . . . . . . . . . 10 ((𝐹:𝐵⟶ℝ*𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V)
184, 14, 16, 17syl3anc 1367 . . . . . . . . 9 (𝜑𝐹 ∈ V)
19 limsupcl 14832 . . . . . . . . 9 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
2018, 19syl 17 . . . . . . . 8 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
2120xrleidd 12548 . . . . . . 7 (𝜑 → (lim sup‘𝐹) ≤ (lim sup‘𝐹))
229limsuple 14837 . . . . . . . 8 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ (lim sup‘𝐹) ∈ ℝ*) → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘)))
232, 4, 20, 22syl3anc 1367 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘)))
2421, 23mpbid 234 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘))
2524r19.21bi 3210 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘))
2620adantr 483 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ*)
279limsupgf 14834 . . . . . . . 8 (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
2827a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*)
2928ffvelrnda 6853 . . . . . 6 ((𝜑𝑘 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∈ ℝ*)
30 xrletr 12554 . . . . . 6 (((lim sup‘𝐹) ∈ ℝ* ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∈ ℝ*𝐴 ∈ ℝ*) → (((lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3126, 29, 8, 30syl3anc 1367 . . . . 5 ((𝜑𝑘 ∈ ℝ) → (((lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3225, 31mpand 693 . . . 4 ((𝜑𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 → (lim sup‘𝐹) ≤ 𝐴))
3311, 32sylbird 262 . . 3 ((𝜑𝑘 ∈ ℝ) → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
3433rexlimdva 3286 . 2 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴))
351, 34mpd 15 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938   class class class wbr 5068  cmpt 5148  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cr 10538  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  [,)cico 12743  lim supclsp 14829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-ico 12747  df-limsup 14830
This theorem is referenced by:  caucvgrlem  15031  limsupre  41929  limsupbnd1f  41974
  Copyright terms: Public domain W3C validator