Step | Hyp | Ref
| Expression |
1 | | limsupbnd1.4 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) |
2 | | limsupbnd.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
3 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ) |
4 | | limsupbnd.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
5 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → 𝐹:𝐵⟶ℝ*) |
6 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ ℝ) |
7 | | limsupbnd.3 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
8 | 7 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → 𝐴 ∈
ℝ*) |
9 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℝ ↦
sup(((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
10 | 9 | limsupgle 15186 |
. . . . 5
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝑘 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (((𝑛 ∈ ℝ
↦ sup(((𝐹 “
(𝑛[,)+∞)) ∩
ℝ*), ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
11 | 3, 5, 6, 8, 10 | syl211anc 1375 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘) ≤ 𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
12 | | reex 10962 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
13 | 12 | ssex 5245 |
. . . . . . . . . . 11
⊢ (𝐵 ⊆ ℝ → 𝐵 ∈ V) |
14 | 2, 13 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ V) |
15 | | xrex 12727 |
. . . . . . . . . . 11
⊢
ℝ* ∈ V |
16 | 15 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ* ∈
V) |
17 | | fex2 7780 |
. . . . . . . . . 10
⊢ ((𝐹:𝐵⟶ℝ* ∧ 𝐵 ∈ V ∧
ℝ* ∈ V) → 𝐹 ∈ V) |
18 | 4, 14, 16, 17 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ V) |
19 | | limsupcl 15182 |
. . . . . . . . 9
⊢ (𝐹 ∈ V → (lim
sup‘𝐹) ∈
ℝ*) |
20 | 18, 19 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
21 | 20 | xrleidd 12886 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘𝐹) ≤ (lim sup‘𝐹)) |
22 | 9 | limsuple 15187 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ (lim
sup‘𝐹) ∈
ℝ*) → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘))) |
23 | 2, 4, 20, 22 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ (lim
sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦
sup(((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*), ℝ*, < ))‘𝑘))) |
24 | 21, 23 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ ℝ (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘)) |
25 | 24 | r19.21bi 3134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (lim sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘)) |
26 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (lim sup‘𝐹) ∈
ℝ*) |
27 | 9 | limsupgf 15184 |
. . . . . . . 8
⊢ (𝑛 ∈ ℝ ↦
sup(((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*), ℝ*, <
)):ℝ⟶ℝ* |
28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, <
)):ℝ⟶ℝ*) |
29 | 28 | ffvelrnda 6961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘) ∈
ℝ*) |
30 | | xrletr 12892 |
. . . . . 6
⊢ (((lim
sup‘𝐹) ∈
ℝ* ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘) ∈ ℝ* ∧ 𝐴 ∈ ℝ*)
→ (((lim sup‘𝐹)
≤ ((𝑛 ∈ ℝ
↦ sup(((𝐹 “
(𝑛[,)+∞)) ∩
ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴)) |
31 | 26, 29, 8, 30 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((lim
sup‘𝐹) ≤ ((𝑛 ∈ ℝ ↦
sup(((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*), ℝ*, < ))‘𝑘) ∧ ((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴)) |
32 | 25, 31 | mpand 692 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (((𝑛 ∈ ℝ ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))‘𝑘) ≤ 𝐴 → (lim sup‘𝐹) ≤ 𝐴)) |
33 | 11, 32 | sylbird 259 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴)) |
34 | 33 | rexlimdva 3213 |
. 2
⊢ (𝜑 → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) → (lim sup‘𝐹) ≤ 𝐴)) |
35 | 1, 34 | mpd 15 |
1
⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |