MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmulmod Structured version   Visualization version   GIF version

Theorem modaddmulmod 13837
Description: The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modaddmulmod (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))

Proof of Theorem modaddmulmod
StepHypRef Expression
1 recn 11088 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
213ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
32adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐵 ∈ ℝ)
5 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
64, 5modcld 13771 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℝ)
76recnd 11132 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℂ)
8 zcn 12465 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
983ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
109adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℂ)
117, 10mulcld 11124 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℂ)
123, 11addcomd 11307 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 + ((𝐵 mod 𝑀) · 𝐶)) = (((𝐵 mod 𝑀) · 𝐶) + 𝐴))
1312oveq1d 7356 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀))
14 zre 12464 . . . . . 6 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
15143ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
1615adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℝ)
176, 16remulcld 11134 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℝ)
18 simpl 482 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ)
1914adantl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
2018, 19remulcld 11134 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
21203adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
2221adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
2322, 5modcld 13771 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ)
24 simp1 1136 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
2524anim1i 615 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
26 simpl3 1194 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℤ)
27 modmulmod 13835 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
284, 26, 5, 27syl3anc 1373 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
29 remulcl 11083 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
3014, 29sylan2 593 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
31303adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
32 modabs2 13801 . . . . 5 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3331, 32sylan 580 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3428, 33eqtr4d 2768 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀))
35 modadd1 13804 . . 3 (((((𝐵 mod 𝑀) · 𝐶) ∈ ℝ ∧ ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀)) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3617, 23, 25, 34, 35syl211anc 1378 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3731adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
3824adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
39 modaddmod 13808 . . . 4 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
4037, 38, 5, 39syl3anc 1373 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
41 recn 11088 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
42 mulcl 11082 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
4341, 8, 42syl2an 596 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
44433adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
4544, 2addcomd 11307 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4645adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4746oveq1d 7356 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4840, 47eqtrd 2765 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4913, 36, 483eqtrd 2769 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  (class class class)co 7341  cc 10996  cr 10997   + caddc 11001   · cmul 11003  cz 12460  +crp 12882   mod cmo 13765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fl 13688  df-mod 13766
This theorem is referenced by:  modprm0  16709  modprmn0modprm0  16711
  Copyright terms: Public domain W3C validator