MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmulmod Structured version   Visualization version   GIF version

Theorem modaddmulmod 13903
Description: The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modaddmulmod (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))

Proof of Theorem modaddmulmod
StepHypRef Expression
1 recn 11158 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
213ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
32adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐵 ∈ ℝ)
5 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
64, 5modcld 13837 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℝ)
76recnd 11202 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℂ)
8 zcn 12534 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
983ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
109adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℂ)
117, 10mulcld 11194 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℂ)
123, 11addcomd 11376 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 + ((𝐵 mod 𝑀) · 𝐶)) = (((𝐵 mod 𝑀) · 𝐶) + 𝐴))
1312oveq1d 7402 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀))
14 zre 12533 . . . . . 6 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
15143ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
1615adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℝ)
176, 16remulcld 11204 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℝ)
18 simpl 482 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ)
1914adantl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
2018, 19remulcld 11204 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
21203adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
2221adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
2322, 5modcld 13837 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ)
24 simp1 1136 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
2524anim1i 615 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
26 simpl3 1194 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℤ)
27 modmulmod 13901 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
284, 26, 5, 27syl3anc 1373 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
29 remulcl 11153 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
3014, 29sylan2 593 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
31303adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
32 modabs2 13867 . . . . 5 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3331, 32sylan 580 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3428, 33eqtr4d 2767 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀))
35 modadd1 13870 . . 3 (((((𝐵 mod 𝑀) · 𝐶) ∈ ℝ ∧ ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀)) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3617, 23, 25, 34, 35syl211anc 1378 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3731adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
3824adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
39 modaddmod 13874 . . . 4 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
4037, 38, 5, 39syl3anc 1373 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
41 recn 11158 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
42 mulcl 11152 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
4341, 8, 42syl2an 596 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
44433adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
4544, 2addcomd 11376 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4645adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4746oveq1d 7402 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4840, 47eqtrd 2764 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4913, 36, 483eqtrd 2768 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071   · cmul 11073  cz 12529  +crp 12951   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832
This theorem is referenced by:  modprm0  16776  modprmn0modprm0  16778
  Copyright terms: Public domain W3C validator