MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmulmod Structured version   Visualization version   GIF version

Theorem modaddmulmod 13961
Description: The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modaddmulmod (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))

Proof of Theorem modaddmulmod
StepHypRef Expression
1 recn 11224 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
213ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
32adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐵 ∈ ℝ)
5 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
64, 5modcld 13897 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℝ)
76recnd 11268 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℂ)
8 zcn 12598 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
983ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
109adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℂ)
117, 10mulcld 11260 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℂ)
123, 11addcomd 11442 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 + ((𝐵 mod 𝑀) · 𝐶)) = (((𝐵 mod 𝑀) · 𝐶) + 𝐴))
1312oveq1d 7425 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀))
14 zre 12597 . . . . . 6 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
15143ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
1615adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℝ)
176, 16remulcld 11270 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℝ)
18 simpl 482 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ)
1914adantl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
2018, 19remulcld 11270 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
21203adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
2221adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
2322, 5modcld 13897 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ)
24 simp1 1136 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
2524anim1i 615 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
26 simpl3 1194 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℤ)
27 modmulmod 13959 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
284, 26, 5, 27syl3anc 1373 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
29 remulcl 11219 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
3014, 29sylan2 593 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
31303adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
32 modabs2 13927 . . . . 5 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3331, 32sylan 580 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3428, 33eqtr4d 2774 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀))
35 modadd1 13930 . . 3 (((((𝐵 mod 𝑀) · 𝐶) ∈ ℝ ∧ ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀)) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3617, 23, 25, 34, 35syl211anc 1378 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3731adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
3824adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
39 modaddmod 13932 . . . 4 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
4037, 38, 5, 39syl3anc 1373 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
41 recn 11224 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
42 mulcl 11218 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
4341, 8, 42syl2an 596 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
44433adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
4544, 2addcomd 11442 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4645adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4746oveq1d 7425 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4840, 47eqtrd 2771 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4913, 36, 483eqtrd 2775 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7410  cc 11132  cr 11133   + caddc 11137   · cmul 11139  cz 12593  +crp 13013   mod cmo 13891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-mod 13892
This theorem is referenced by:  modprm0  16830  modprmn0modprm0  16832
  Copyright terms: Public domain W3C validator