MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmulmod Structured version   Visualization version   GIF version

Theorem modaddmulmod 12945
Description: The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modaddmulmod (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))

Proof of Theorem modaddmulmod
StepHypRef Expression
1 recn 10228 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
213ad2ant1 1127 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
32adantr 466 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simpl2 1229 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐵 ∈ ℝ)
5 simpr 471 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
64, 5modcld 12882 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℝ)
76recnd 10270 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 mod 𝑀) ∈ ℂ)
8 zcn 11584 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
983ad2ant3 1129 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
109adantr 466 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℂ)
117, 10mulcld 10262 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℂ)
123, 11addcomd 10440 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 + ((𝐵 mod 𝑀) · 𝐶)) = (((𝐵 mod 𝑀) · 𝐶) + 𝐴))
1312oveq1d 6808 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀))
14 zre 11583 . . . . . 6 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
15143ad2ant3 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
1615adantr 466 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℝ)
176, 16remulcld 10272 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℝ)
18 simpl 468 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ)
1914adantl 467 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
2018, 19remulcld 10272 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
21203adant1 1124 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
2221adantr 466 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
2322, 5modcld 12882 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ)
24 simp1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
2524anim1i 602 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
26 simpl3 1231 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐶 ∈ ℤ)
27 modmulmod 12943 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
284, 26, 5, 27syl3anc 1476 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
29 remulcl 10223 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
3014, 29sylan2 580 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
31303adant1 1124 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
32 modabs2 12912 . . . . 5 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3331, 32sylan 569 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
3428, 33eqtr4d 2808 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀))
35 modadd1 12915 . . 3 (((((𝐵 mod 𝑀) · 𝐶) ∈ ℝ ∧ ((𝐵 · 𝐶) mod 𝑀) ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀)) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3617, 23, 25, 34, 35syl211anc 1482 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
3731adantr 466 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℝ)
3824adantr 466 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
39 modaddmod 12917 . . . 4 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
4037, 38, 5, 39syl3anc 1476 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
41 recn 10228 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
42 mulcl 10222 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
4341, 8, 42syl2an 583 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
44433adant1 1124 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℂ)
4544, 2addcomd 10440 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4645adantr 466 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
4746oveq1d 6808 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → (((𝐵 · 𝐶) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4840, 47eqtrd 2805 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
4913, 36, 483eqtrd 2809 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  (class class class)co 6793  cc 10136  cr 10137   + caddc 10141   · cmul 10143  cz 11579  +crp 12035   mod cmo 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fl 12801  df-mod 12877
This theorem is referenced by:  modprm0  15717  modprmn0modprm0  15719
  Copyright terms: Public domain W3C validator