Step | Hyp | Ref
| Expression |
1 | | lpolsat.o |
. . 3
β’ (π β β₯ β π) |
2 | | lpolsat.w |
. . . 4
β’ (π β π β π) |
3 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
4 | | eqid 2732 |
. . . . 5
β’
(LSubSpβπ) =
(LSubSpβπ) |
5 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
6 | | lpolsat.a |
. . . . 5
β’ π΄ = (LSAtomsβπ) |
7 | | lpolsat.h |
. . . . 5
β’ π» = (LSHypβπ) |
8 | | lpolsat.p |
. . . . 5
β’ π = (LPolβπ) |
9 | 3, 4, 5, 6, 7, 8 | islpolN 40342 |
. . . 4
β’ (π β π β ( β₯ β π β ( β₯ :π«
(Baseβπ)βΆ(LSubSpβπ) β§ (( β₯
β(Baseβπ)) =
{(0gβπ)}
β§ βπ₯βπ¦((π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯))))) |
10 | 2, 9 | syl 17 |
. . 3
β’ (π β ( β₯ β π β ( β₯ :π«
(Baseβπ)βΆ(LSubSpβπ) β§ (( β₯
β(Baseβπ)) =
{(0gβπ)}
β§ βπ₯βπ¦((π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯))))) |
11 | 1, 10 | mpbid 231 |
. 2
β’ (π β ( β₯ :π«
(Baseβπ)βΆ(LSubSpβπ) β§ (( β₯
β(Baseβπ)) =
{(0gβπ)}
β§ βπ₯βπ¦((π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯)))) |
12 | | simpr3 1196 |
. . 3
β’ (( β₯
:π« (Baseβπ)βΆ(LSubSpβπ) β§ (( β₯
β(Baseβπ)) =
{(0gβπ)}
β§ βπ₯βπ¦((π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯))) β βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯)) |
13 | | lpolsat.q |
. . . 4
β’ (π β π β π΄) |
14 | | fveq2 6888 |
. . . . . . 7
β’ (π₯ = π β ( β₯ βπ₯) = ( β₯ βπ)) |
15 | 14 | eleq1d 2818 |
. . . . . 6
β’ (π₯ = π β (( β₯ βπ₯) β π» β ( β₯ βπ) β π»)) |
16 | | 2fveq3 6893 |
. . . . . . 7
β’ (π₯ = π β ( β₯ β( β₯
βπ₯)) = ( β₯
β( β₯ βπ))) |
17 | | id 22 |
. . . . . . 7
β’ (π₯ = π β π₯ = π) |
18 | 16, 17 | eqeq12d 2748 |
. . . . . 6
β’ (π₯ = π β (( β₯ β( β₯
βπ₯)) = π₯ β ( β₯ β( β₯
βπ)) = π)) |
19 | 15, 18 | anbi12d 631 |
. . . . 5
β’ (π₯ = π β ((( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯) β (( β₯ βπ) β π» β§ ( β₯ β( β₯
βπ)) = π))) |
20 | 19 | rspcv 3608 |
. . . 4
β’ (π β π΄ β (βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯) β (( β₯ βπ) β π» β§ ( β₯ β( β₯
βπ)) = π))) |
21 | 13, 20 | syl 17 |
. . 3
β’ (π β (βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯) β (( β₯ βπ) β π» β§ ( β₯ β( β₯
βπ)) = π))) |
22 | | simpl 483 |
. . 3
β’ ((( β₯
βπ) β π» β§ ( β₯ β( β₯
βπ)) = π) β ( β₯ βπ) β π») |
23 | 12, 21, 22 | syl56 36 |
. 2
β’ (π β (( β₯ :π«
(Baseβπ)βΆ(LSubSpβπ) β§ (( β₯
β(Baseβπ)) =
{(0gβπ)}
β§ βπ₯βπ¦((π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β π΄ (( β₯ βπ₯) β π» β§ ( β₯ β( β₯
βπ₯)) = π₯))) β ( β₯ βπ) β π»)) |
24 | 11, 23 | mpd 15 |
1
β’ (π β ( β₯ βπ) β π») |