Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolsatN Structured version   Visualization version   GIF version

Theorem lpolsatN 39429
Description: The polarity of an atomic subspace is a hyperplane. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolsat.a 𝐴 = (LSAtoms‘𝑊)
lpolsat.h 𝐻 = (LSHyp‘𝑊)
lpolsat.p 𝑃 = (LPol‘𝑊)
lpolsat.w (𝜑𝑊𝑋)
lpolsat.o (𝜑𝑃)
lpolsat.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lpolsatN (𝜑 → ( 𝑄) ∈ 𝐻)

Proof of Theorem lpolsatN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolsat.o . . 3 (𝜑𝑃)
2 lpolsat.w . . . 4 (𝜑𝑊𝑋)
3 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2738 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 eqid 2738 . . . . 5 (0g𝑊) = (0g𝑊)
6 lpolsat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
7 lpolsat.h . . . . 5 𝐻 = (LSHyp‘𝑊)
8 lpolsat.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 39424 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 231 . 2 (𝜑 → ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))))
12 simpr3 1194 . . 3 (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))) → ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))
13 lpolsat.q . . . 4 (𝜑𝑄𝐴)
14 fveq2 6756 . . . . . . 7 (𝑥 = 𝑄 → ( 𝑥) = ( 𝑄))
1514eleq1d 2823 . . . . . 6 (𝑥 = 𝑄 → (( 𝑥) ∈ 𝐻 ↔ ( 𝑄) ∈ 𝐻))
16 2fveq3 6761 . . . . . . 7 (𝑥 = 𝑄 → ( ‘( 𝑥)) = ( ‘( 𝑄)))
17 id 22 . . . . . . 7 (𝑥 = 𝑄𝑥 = 𝑄)
1816, 17eqeq12d 2754 . . . . . 6 (𝑥 = 𝑄 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑄)) = 𝑄))
1915, 18anbi12d 630 . . . . 5 (𝑥 = 𝑄 → ((( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥) ↔ (( 𝑄) ∈ 𝐻 ∧ ( ‘( 𝑄)) = 𝑄)))
2019rspcv 3547 . . . 4 (𝑄𝐴 → (∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ 𝐻 ∧ ( ‘( 𝑄)) = 𝑄)))
2113, 20syl 17 . . 3 (𝜑 → (∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ 𝐻 ∧ ( ‘( 𝑄)) = 𝑄)))
22 simpl 482 . . 3 ((( 𝑄) ∈ 𝐻 ∧ ( ‘( 𝑄)) = 𝑄) → ( 𝑄) ∈ 𝐻)
2312, 21, 22syl56 36 . 2 (𝜑 → (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))) → ( 𝑄) ∈ 𝐻))
2411, 23mpd 15 1 (𝜑 → ( 𝑄) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063  wss 3883  𝒫 cpw 4530  {csn 4558  wf 6414  cfv 6418  Basecbs 16840  0gc0g 17067  LSubSpclss 20108  LSAtomsclsa 36915  LSHypclsh 36916  LPolclpoN 39421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-lpolN 39422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator