Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolpolsatN Structured version   Visualization version   GIF version

Theorem lpolpolsatN 37503
Description: Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolpolsat.a 𝐴 = (LSAtoms‘𝑊)
lpolpolsat.p 𝑃 = (LPol‘𝑊)
lpolpolsat.w (𝜑𝑊𝑋)
lpolpolsat.o (𝜑𝑃)
lpolpolsat.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lpolpolsatN (𝜑 → ( ‘( 𝑄)) = 𝑄)

Proof of Theorem lpolpolsatN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolpolsat.o . . 3 (𝜑𝑃)
2 lpolpolsat.w . . . 4 (𝜑𝑊𝑋)
3 eqid 2798 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2798 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 eqid 2798 . . . . 5 (0g𝑊) = (0g𝑊)
6 lpolpolsat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
7 eqid 2798 . . . . 5 (LSHyp‘𝑊) = (LSHyp‘𝑊)
8 lpolpolsat.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 37497 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 224 . 2 (𝜑 → ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))))
12 simpr3 1253 . . 3 (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))
13 lpolpolsat.q . . . 4 (𝜑𝑄𝐴)
14 fveq2 6410 . . . . . . 7 (𝑥 = 𝑄 → ( 𝑥) = ( 𝑄))
1514eleq1d 2862 . . . . . 6 (𝑥 = 𝑄 → (( 𝑥) ∈ (LSHyp‘𝑊) ↔ ( 𝑄) ∈ (LSHyp‘𝑊)))
16 2fveq3 6415 . . . . . . 7 (𝑥 = 𝑄 → ( ‘( 𝑥)) = ( ‘( 𝑄)))
17 id 22 . . . . . . 7 (𝑥 = 𝑄𝑥 = 𝑄)
1816, 17eqeq12d 2813 . . . . . 6 (𝑥 = 𝑄 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑄)) = 𝑄))
1915, 18anbi12d 625 . . . . 5 (𝑥 = 𝑄 → ((( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) ↔ (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
2019rspcv 3492 . . . 4 (𝑄𝐴 → (∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
2113, 20syl 17 . . 3 (𝜑 → (∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
22 simpr 478 . . 3 ((( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄) → ( ‘( 𝑄)) = 𝑄)
2312, 21, 22syl56 36 . 2 (𝜑 → (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ( ‘( 𝑄)) = 𝑄))
2411, 23mpd 15 1 (𝜑 → ( ‘( 𝑄)) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108  wal 1651   = wceq 1653  wcel 2157  wral 3088  wss 3768  𝒫 cpw 4348  {csn 4367  wf 6096  cfv 6100  Basecbs 16181  0gc0g 16412  LSubSpclss 19247  LSAtomsclsa 34988  LSHypclsh 34989  LPolclpoN 37494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3386  df-sbc 3633  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-fv 6108  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-map 8096  df-lpolN 37495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator