Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolpolsatN Structured version   Visualization version   GIF version

Theorem lpolpolsatN 41507
Description: Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolpolsat.a 𝐴 = (LSAtoms‘𝑊)
lpolpolsat.p 𝑃 = (LPol‘𝑊)
lpolpolsat.w (𝜑𝑊𝑋)
lpolpolsat.o (𝜑𝑃)
lpolpolsat.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lpolpolsatN (𝜑 → ( ‘( 𝑄)) = 𝑄)

Proof of Theorem lpolpolsatN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolpolsat.o . . 3 (𝜑𝑃)
2 lpolpolsat.w . . . 4 (𝜑𝑊𝑋)
3 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2730 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 eqid 2730 . . . . 5 (0g𝑊) = (0g𝑊)
6 lpolpolsat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
7 eqid 2730 . . . . 5 (LSHyp‘𝑊) = (LSHyp‘𝑊)
8 lpolpolsat.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 41501 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 232 . 2 (𝜑 → ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))))
12 simpr3 1197 . . 3 (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))
13 lpolpolsat.q . . . 4 (𝜑𝑄𝐴)
14 fveq2 6817 . . . . . . 7 (𝑥 = 𝑄 → ( 𝑥) = ( 𝑄))
1514eleq1d 2814 . . . . . 6 (𝑥 = 𝑄 → (( 𝑥) ∈ (LSHyp‘𝑊) ↔ ( 𝑄) ∈ (LSHyp‘𝑊)))
16 2fveq3 6822 . . . . . . 7 (𝑥 = 𝑄 → ( ‘( 𝑥)) = ( ‘( 𝑄)))
17 id 22 . . . . . . 7 (𝑥 = 𝑄𝑥 = 𝑄)
1816, 17eqeq12d 2746 . . . . . 6 (𝑥 = 𝑄 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑄)) = 𝑄))
1915, 18anbi12d 632 . . . . 5 (𝑥 = 𝑄 → ((( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) ↔ (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
2019rspcv 3571 . . . 4 (𝑄𝐴 → (∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
2113, 20syl 17 . . 3 (𝜑 → (∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
22 simpr 484 . . 3 ((( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄) → ( ‘( 𝑄)) = 𝑄)
2312, 21, 22syl56 36 . 2 (𝜑 → (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ( ‘( 𝑄)) = 𝑄))
2411, 23mpd 15 1 (𝜑 → ( ‘( 𝑄)) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2110  wral 3045  wss 3900  𝒫 cpw 4548  {csn 4574  wf 6473  cfv 6477  Basecbs 17112  0gc0g 17335  LSubSpclss 20857  LSAtomsclsa 38992  LSHypclsh 38993  LPolclpoN 41498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-lpolN 41499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator