Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topmtcl Structured version   Visualization version   GIF version

Theorem topmtcl 35552
Description: The meet of a collection of topologies on 𝑋 is again a topology on 𝑋. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topmtcl ((𝑋 ∈ 𝑉 ∧ 𝑆 βŠ† (TopOnβ€˜π‘‹)) β†’ (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOnβ€˜π‘‹))

Proof of Theorem topmtcl
StepHypRef Expression
1 toponmre 22818 . 2 (𝑋 ∈ 𝑉 β†’ (TopOnβ€˜π‘‹) ∈ (Mooreβ€˜π’« 𝑋))
2 mrerintcl 17546 . 2 (((TopOnβ€˜π‘‹) ∈ (Mooreβ€˜π’« 𝑋) ∧ 𝑆 βŠ† (TopOnβ€˜π‘‹)) β†’ (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOnβ€˜π‘‹))
31, 2sylan 579 1 ((𝑋 ∈ 𝑉 ∧ 𝑆 βŠ† (TopOnβ€˜π‘‹)) β†’ (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOnβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∈ wcel 2105   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  βˆ© cint 4950  β€˜cfv 6543  Moorecmre 17531  TopOnctopon 22633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-mre 17535  df-top 22617  df-topon 22634
This theorem is referenced by:  topmeet  35553
  Copyright terms: Public domain W3C validator