![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topmtcl | Structured version Visualization version GIF version |
Description: The meet of a collection of topologies on π is again a topology on π. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
topmtcl | β’ ((π β π β§ π β (TopOnβπ)) β (π« π β© β© π) β (TopOnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmre 22818 | . 2 β’ (π β π β (TopOnβπ) β (Mooreβπ« π)) | |
2 | mrerintcl 17546 | . 2 β’ (((TopOnβπ) β (Mooreβπ« π) β§ π β (TopOnβπ)) β (π« π β© β© π) β (TopOnβπ)) | |
3 | 1, 2 | sylan 579 | 1 β’ ((π β π β§ π β (TopOnβπ)) β (π« π β© β© π) β (TopOnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2105 β© cin 3947 β wss 3948 π« cpw 4602 β© cint 4950 βcfv 6543 Moorecmre 17531 TopOnctopon 22633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-mre 17535 df-top 22617 df-topon 22634 |
This theorem is referenced by: topmeet 35553 |
Copyright terms: Public domain | W3C validator |