Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topmtcl | Structured version Visualization version GIF version |
Description: The meet of a collection of topologies on 𝑋 is again a topology on 𝑋. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
topmtcl | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmre 21847 | . 2 ⊢ (𝑋 ∈ 𝑉 → (TopOn‘𝑋) ∈ (Moore‘𝒫 𝑋)) | |
2 | mrerintcl 16974 | . 2 ⊢ (((TopOn‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOn‘𝑋)) | |
3 | 1, 2 | sylan 583 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 ∩ cin 3843 ⊆ wss 3844 𝒫 cpw 4489 ∩ cint 4837 ‘cfv 6340 Moorecmre 16959 TopOnctopon 21664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-int 4838 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-iota 6298 df-fun 6342 df-fv 6348 df-mre 16963 df-top 21648 df-topon 21665 |
This theorem is referenced by: topmeet 34199 |
Copyright terms: Public domain | W3C validator |