MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsn2 Structured version   Visualization version   GIF version

Theorem restsn2 21774
Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
restsn2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t {𝐴}) = 𝒫 {𝐴})

Proof of Theorem restsn2
StepHypRef Expression
1 snssi 4726 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
2 resttopon 21764 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐽t {𝐴}) ∈ (TopOn‘{𝐴}))
31, 2sylan2 595 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t {𝐴}) ∈ (TopOn‘{𝐴}))
4 topsn 21534 . 2 ((𝐽t {𝐴}) ∈ (TopOn‘{𝐴}) → (𝐽t {𝐴}) = 𝒫 {𝐴})
53, 4syl 17 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t {𝐴}) = 𝒫 {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wss 3919  𝒫 cpw 4522  {csn 4550  cfv 6344  (class class class)co 7146  t crest 16692  TopOnctopon 21513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-oadd 8098  df-er 8281  df-en 8502  df-fin 8505  df-fi 8868  df-rest 16694  df-topgen 16715  df-top 21497  df-topon 21514  df-bases 21549
This theorem is referenced by:  conncompid  22034  xkohaus  22256  xkoptsub  22257  cvmlift2lem9  32585  cncfdmsn  42398
  Copyright terms: Public domain W3C validator