Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restsn2 | Structured version Visualization version GIF version |
Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
restsn2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4696 | . . 3 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) | |
2 | resttopon 21912 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐽 ↾t {𝐴}) ∈ (TopOn‘{𝐴})) | |
3 | 1, 2 | sylan2 596 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) ∈ (TopOn‘{𝐴})) |
4 | topsn 21682 | . 2 ⊢ ((𝐽 ↾t {𝐴}) ∈ (TopOn‘{𝐴}) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ⊆ wss 3843 𝒫 cpw 4488 {csn 4516 ‘cfv 6339 (class class class)co 7170 ↾t crest 16797 TopOnctopon 21661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-en 8556 df-fin 8559 df-fi 8948 df-rest 16799 df-topgen 16820 df-top 21645 df-topon 21662 df-bases 21697 |
This theorem is referenced by: conncompid 22182 xkohaus 22404 xkoptsub 22405 cvmlift2lem9 32844 cncfdmsn 42973 |
Copyright terms: Public domain | W3C validator |