MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1val Structured version   Visualization version   GIF version

Theorem om1val 24546
Description: The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1val.o 𝑂 = (𝐽 Ξ©1 π‘Œ)
om1val.b (πœ‘ β†’ 𝐡 = {𝑓 ∈ (II Cn 𝐽) ∣ ((π‘“β€˜0) = π‘Œ ∧ (π‘“β€˜1) = π‘Œ)})
om1val.p (πœ‘ β†’ + = (*π‘β€˜π½))
om1val.k (πœ‘ β†’ 𝐾 = (𝐽 ↑ko II))
om1val.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
om1val.y (πœ‘ β†’ π‘Œ ∈ 𝑋)
Assertion
Ref Expression
om1val (πœ‘ β†’ 𝑂 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(TopSetβ€˜ndx), 𝐾⟩})
Distinct variable groups:   𝑓,𝐽   πœ‘,𝑓   𝑓,π‘Œ
Allowed substitution hints:   𝐡(𝑓)   + (𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem om1val
Dummy variables 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om1val.o . 2 𝑂 = (𝐽 Ξ©1 π‘Œ)
2 df-om1 24522 . . . 4 Ξ©1 = (𝑗 ∈ Top, 𝑦 ∈ βˆͺ 𝑗 ↦ {⟨(Baseβ€˜ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦)}⟩, ⟨(+gβ€˜ndx), (*π‘β€˜π‘—)⟩, ⟨(TopSetβ€˜ndx), (𝑗 ↑ko II)⟩})
32a1i 11 . . 3 (πœ‘ β†’ Ξ©1 = (𝑗 ∈ Top, 𝑦 ∈ βˆͺ 𝑗 ↦ {⟨(Baseβ€˜ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦)}⟩, ⟨(+gβ€˜ndx), (*π‘β€˜π‘—)⟩, ⟨(TopSetβ€˜ndx), (𝑗 ↑ko II)⟩}))
4 simprl 770 . . . . . . . 8 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ 𝑗 = 𝐽)
54oveq2d 7425 . . . . . . 7 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (II Cn 𝑗) = (II Cn 𝐽))
6 simprr 772 . . . . . . . . 9 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ 𝑦 = π‘Œ)
76eqeq2d 2744 . . . . . . . 8 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ ((π‘“β€˜0) = 𝑦 ↔ (π‘“β€˜0) = π‘Œ))
86eqeq2d 2744 . . . . . . . 8 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ ((π‘“β€˜1) = 𝑦 ↔ (π‘“β€˜1) = π‘Œ))
97, 8anbi12d 632 . . . . . . 7 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦) ↔ ((π‘“β€˜0) = π‘Œ ∧ (π‘“β€˜1) = π‘Œ)))
105, 9rabeqbidv 3450 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ {𝑓 ∈ (II Cn 𝑗) ∣ ((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦)} = {𝑓 ∈ (II Cn 𝐽) ∣ ((π‘“β€˜0) = π‘Œ ∧ (π‘“β€˜1) = π‘Œ)})
11 om1val.b . . . . . . 7 (πœ‘ β†’ 𝐡 = {𝑓 ∈ (II Cn 𝐽) ∣ ((π‘“β€˜0) = π‘Œ ∧ (π‘“β€˜1) = π‘Œ)})
1211adantr 482 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ 𝐡 = {𝑓 ∈ (II Cn 𝐽) ∣ ((π‘“β€˜0) = π‘Œ ∧ (π‘“β€˜1) = π‘Œ)})
1310, 12eqtr4d 2776 . . . . 5 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ {𝑓 ∈ (II Cn 𝑗) ∣ ((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦)} = 𝐡)
1413opeq2d 4881 . . . 4 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ ⟨(Baseβ€˜ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦)}⟩ = ⟨(Baseβ€˜ndx), 𝐡⟩)
154fveq2d 6896 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (*π‘β€˜π‘—) = (*π‘β€˜π½))
16 om1val.p . . . . . . 7 (πœ‘ β†’ + = (*π‘β€˜π½))
1716adantr 482 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ + = (*π‘β€˜π½))
1815, 17eqtr4d 2776 . . . . 5 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (*π‘β€˜π‘—) = + )
1918opeq2d 4881 . . . 4 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ ⟨(+gβ€˜ndx), (*π‘β€˜π‘—)⟩ = ⟨(+gβ€˜ndx), + ⟩)
204oveq1d 7424 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (𝑗 ↑ko II) = (𝐽 ↑ko II))
21 om1val.k . . . . . . 7 (πœ‘ β†’ 𝐾 = (𝐽 ↑ko II))
2221adantr 482 . . . . . 6 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ 𝐾 = (𝐽 ↑ko II))
2320, 22eqtr4d 2776 . . . . 5 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ (𝑗 ↑ko II) = 𝐾)
2423opeq2d 4881 . . . 4 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ ⟨(TopSetβ€˜ndx), (𝑗 ↑ko II)⟩ = ⟨(TopSetβ€˜ndx), 𝐾⟩)
2514, 19, 24tpeq123d 4753 . . 3 ((πœ‘ ∧ (𝑗 = 𝐽 ∧ 𝑦 = π‘Œ)) β†’ {⟨(Baseβ€˜ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦)}⟩, ⟨(+gβ€˜ndx), (*π‘β€˜π‘—)⟩, ⟨(TopSetβ€˜ndx), (𝑗 ↑ko II)⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(TopSetβ€˜ndx), 𝐾⟩})
26 unieq 4920 . . . . 5 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
2726adantl 483 . . . 4 ((πœ‘ ∧ 𝑗 = 𝐽) β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
28 om1val.j . . . . . 6 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
29 toponuni 22416 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
3028, 29syl 17 . . . . 5 (πœ‘ β†’ 𝑋 = βˆͺ 𝐽)
3130adantr 482 . . . 4 ((πœ‘ ∧ 𝑗 = 𝐽) β†’ 𝑋 = βˆͺ 𝐽)
3227, 31eqtr4d 2776 . . 3 ((πœ‘ ∧ 𝑗 = 𝐽) β†’ βˆͺ 𝑗 = 𝑋)
33 topontop 22415 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
3428, 33syl 17 . . 3 (πœ‘ β†’ 𝐽 ∈ Top)
35 om1val.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑋)
36 tpex 7734 . . . 4 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(TopSetβ€˜ndx), 𝐾⟩} ∈ V
3736a1i 11 . . 3 (πœ‘ β†’ {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(TopSetβ€˜ndx), 𝐾⟩} ∈ V)
383, 25, 32, 34, 35, 37ovmpodx 7559 . 2 (πœ‘ β†’ (𝐽 Ξ©1 π‘Œ) = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(TopSetβ€˜ndx), 𝐾⟩})
391, 38eqtrid 2785 1 (πœ‘ β†’ 𝑂 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(TopSetβ€˜ndx), 𝐾⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3433  Vcvv 3475  {ctp 4633  βŸ¨cop 4635  βˆͺ cuni 4909  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  0cc0 11110  1c1 11111  ndxcnx 17126  Basecbs 17144  +gcplusg 17197  TopSetcts 17203  Topctop 22395  TopOnctopon 22412   Cn ccn 22728   ↑ko cxko 23065  IIcii 24391  *𝑝cpco 24516   Ξ©1 comi 24517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-topon 22413  df-om1 24522
This theorem is referenced by:  om1bas  24547  om1plusg  24550  om1tset  24551
  Copyright terms: Public domain W3C validator