MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1val Structured version   Visualization version   GIF version

Theorem om1val 23337
Description: The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1val.o 𝑂 = (𝐽 Ω1 𝑌)
om1val.b (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
om1val.p (𝜑+ = (*𝑝𝐽))
om1val.k (𝜑𝐾 = (𝐽 ^ko II))
om1val.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1val.y (𝜑𝑌𝑋)
Assertion
Ref Expression
om1val (𝜑𝑂 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
Distinct variable groups:   𝑓,𝐽   𝜑,𝑓   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑓)   + (𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem om1val
Dummy variables 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om1val.o . 2 𝑂 = (𝐽 Ω1 𝑌)
2 df-om1 23313 . . . 4 Ω1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩})
32a1i 11 . . 3 (𝜑 → Ω1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩}))
4 simprl 758 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑗 = 𝐽)
54oveq2d 6992 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (II Cn 𝑗) = (II Cn 𝐽))
6 simprr 760 . . . . . . . . 9 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑦 = 𝑌)
76eqeq2d 2788 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑓‘0) = 𝑦 ↔ (𝑓‘0) = 𝑌))
86eqeq2d 2788 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑌))
97, 8anbi12d 621 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)))
105, 9rabeqbidv 3408 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)} = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
11 om1val.b . . . . . . 7 (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
1211adantr 473 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
1310, 12eqtr4d 2817 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)} = 𝐵)
1413opeq2d 4684 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩ = ⟨(Base‘ndx), 𝐵⟩)
154fveq2d 6503 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (*𝑝𝑗) = (*𝑝𝐽))
16 om1val.p . . . . . . 7 (𝜑+ = (*𝑝𝐽))
1716adantr 473 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → + = (*𝑝𝐽))
1815, 17eqtr4d 2817 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (*𝑝𝑗) = + )
1918opeq2d 4684 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ⟨(+g‘ndx), (*𝑝𝑗)⟩ = ⟨(+g‘ndx), + ⟩)
204oveq1d 6991 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 ^ko II) = (𝐽 ^ko II))
21 om1val.k . . . . . . 7 (𝜑𝐾 = (𝐽 ^ko II))
2221adantr 473 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝐾 = (𝐽 ^ko II))
2320, 22eqtr4d 2817 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 ^ko II) = 𝐾)
2423opeq2d 4684 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩ = ⟨(TopSet‘ndx), 𝐾⟩)
2514, 19, 24tpeq123d 4558 . . 3 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
26 unieq 4720 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2726adantl 474 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝐽)
28 om1val.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
29 toponuni 21226 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3028, 29syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
3130adantr 473 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑋 = 𝐽)
3227, 31eqtr4d 2817 . . 3 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝑋)
33 topontop 21225 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3428, 33syl 17 . . 3 (𝜑𝐽 ∈ Top)
35 om1val.y . . 3 (𝜑𝑌𝑋)
36 tpex 7287 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩} ∈ V
3736a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩} ∈ V)
383, 25, 32, 34, 35, 37ovmpodx 7117 . 2 (𝜑 → (𝐽 Ω1 𝑌) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
391, 38syl5eq 2826 1 (𝜑𝑂 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {crab 3092  Vcvv 3415  {ctp 4445  cop 4447   cuni 4712  cfv 6188  (class class class)co 6976  cmpo 6978  0cc0 10335  1c1 10336  ndxcnx 16336  Basecbs 16339  +gcplusg 16421  TopSetcts 16427  Topctop 21205  TopOnctopon 21222   Cn ccn 21536   ^ko cxko 21873  IIcii 23186  *𝑝cpco 23307   Ω1 comi 23308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-iota 6152  df-fun 6190  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-topon 21223  df-om1 23313
This theorem is referenced by:  om1bas  23338  om1plusg  23341  om1tset  23342
  Copyright terms: Public domain W3C validator