Step | Hyp | Ref
| Expression |
1 | | om1val.o |
. 2
β’ π = (π½ Ξ©1 π) |
2 | | df-om1 24513 |
. . . 4
β’
Ξ©1 = (π
β Top, π¦ β βͺ π
β¦ {β¨(Baseβndx), {π β (II Cn π) β£ ((πβ0) = π¦ β§ (πβ1) = π¦)}β©, β¨(+gβndx),
(*πβπ)β©, β¨(TopSetβndx), (π βko
II)β©}) |
3 | 2 | a1i 11 |
. . 3
β’ (π β Ξ©1 =
(π β Top, π¦ β βͺ π
β¦ {β¨(Baseβndx), {π β (II Cn π) β£ ((πβ0) = π¦ β§ (πβ1) = π¦)}β©, β¨(+gβndx),
(*πβπ)β©, β¨(TopSetβndx), (π βko
II)β©})) |
4 | | simprl 769 |
. . . . . . . 8
β’ ((π β§ (π = π½ β§ π¦ = π)) β π = π½) |
5 | 4 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ (π = π½ β§ π¦ = π)) β (II Cn π) = (II Cn π½)) |
6 | | simprr 771 |
. . . . . . . . 9
β’ ((π β§ (π = π½ β§ π¦ = π)) β π¦ = π) |
7 | 6 | eqeq2d 2743 |
. . . . . . . 8
β’ ((π β§ (π = π½ β§ π¦ = π)) β ((πβ0) = π¦ β (πβ0) = π)) |
8 | 6 | eqeq2d 2743 |
. . . . . . . 8
β’ ((π β§ (π = π½ β§ π¦ = π)) β ((πβ1) = π¦ β (πβ1) = π)) |
9 | 7, 8 | anbi12d 631 |
. . . . . . 7
β’ ((π β§ (π = π½ β§ π¦ = π)) β (((πβ0) = π¦ β§ (πβ1) = π¦) β ((πβ0) = π β§ (πβ1) = π))) |
10 | 5, 9 | rabeqbidv 3449 |
. . . . . 6
β’ ((π β§ (π = π½ β§ π¦ = π)) β {π β (II Cn π) β£ ((πβ0) = π¦ β§ (πβ1) = π¦)} = {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}) |
11 | | om1val.b |
. . . . . . 7
β’ (π β π΅ = {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}) |
12 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ (π = π½ β§ π¦ = π)) β π΅ = {π β (II Cn π½) β£ ((πβ0) = π β§ (πβ1) = π)}) |
13 | 10, 12 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ (π = π½ β§ π¦ = π)) β {π β (II Cn π) β£ ((πβ0) = π¦ β§ (πβ1) = π¦)} = π΅) |
14 | 13 | opeq2d 4879 |
. . . 4
β’ ((π β§ (π = π½ β§ π¦ = π)) β β¨(Baseβndx), {π β (II Cn π) β£ ((πβ0) = π¦ β§ (πβ1) = π¦)}β© = β¨(Baseβndx), π΅β©) |
15 | 4 | fveq2d 6892 |
. . . . . 6
β’ ((π β§ (π = π½ β§ π¦ = π)) β (*πβπ) =
(*πβπ½)) |
16 | | om1val.p |
. . . . . . 7
β’ (π β + =
(*πβπ½)) |
17 | 16 | adantr 481 |
. . . . . 6
β’ ((π β§ (π = π½ β§ π¦ = π)) β + =
(*πβπ½)) |
18 | 15, 17 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ (π = π½ β§ π¦ = π)) β (*πβπ) = + ) |
19 | 18 | opeq2d 4879 |
. . . 4
β’ ((π β§ (π = π½ β§ π¦ = π)) β β¨(+gβndx),
(*πβπ)β© = β¨(+gβndx),
+
β©) |
20 | 4 | oveq1d 7420 |
. . . . . 6
β’ ((π β§ (π = π½ β§ π¦ = π)) β (π βko II) = (π½ βko II)) |
21 | | om1val.k |
. . . . . . 7
β’ (π β πΎ = (π½ βko II)) |
22 | 21 | adantr 481 |
. . . . . 6
β’ ((π β§ (π = π½ β§ π¦ = π)) β πΎ = (π½ βko II)) |
23 | 20, 22 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ (π = π½ β§ π¦ = π)) β (π βko II) = πΎ) |
24 | 23 | opeq2d 4879 |
. . . 4
β’ ((π β§ (π = π½ β§ π¦ = π)) β β¨(TopSetβndx), (π βko II)β© =
β¨(TopSetβndx), πΎβ©) |
25 | 14, 19, 24 | tpeq123d 4751 |
. . 3
β’ ((π β§ (π = π½ β§ π¦ = π)) β {β¨(Baseβndx), {π β (II Cn π) β£ ((πβ0) = π¦ β§ (πβ1) = π¦)}β©, β¨(+gβndx),
(*πβπ)β©, β¨(TopSetβndx), (π βko II)β©}
= {β¨(Baseβndx), π΅β©, β¨(+gβndx),
+ β©,
β¨(TopSetβndx), πΎβ©}) |
26 | | unieq 4918 |
. . . . 5
β’ (π = π½ β βͺ π = βͺ
π½) |
27 | 26 | adantl 482 |
. . . 4
β’ ((π β§ π = π½) β βͺ π = βͺ
π½) |
28 | | om1val.j |
. . . . . 6
β’ (π β π½ β (TopOnβπ)) |
29 | | toponuni 22407 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
30 | 28, 29 | syl 17 |
. . . . 5
β’ (π β π = βͺ π½) |
31 | 30 | adantr 481 |
. . . 4
β’ ((π β§ π = π½) β π = βͺ π½) |
32 | 27, 31 | eqtr4d 2775 |
. . 3
β’ ((π β§ π = π½) β βͺ π = π) |
33 | | topontop 22406 |
. . . 4
β’ (π½ β (TopOnβπ) β π½ β Top) |
34 | 28, 33 | syl 17 |
. . 3
β’ (π β π½ β Top) |
35 | | om1val.y |
. . 3
β’ (π β π β π) |
36 | | tpex 7730 |
. . . 4
β’
{β¨(Baseβndx), π΅β©, β¨(+gβndx),
+ β©,
β¨(TopSetβndx), πΎβ©} β V |
37 | 36 | a1i 11 |
. . 3
β’ (π β {β¨(Baseβndx),
π΅β©,
β¨(+gβndx), + β©,
β¨(TopSetβndx), πΎβ©} β V) |
38 | 3, 25, 32, 34, 35, 37 | ovmpodx 7555 |
. 2
β’ (π β (π½ Ξ©1 π) = {β¨(Baseβndx), π΅β©,
β¨(+gβndx), + β©,
β¨(TopSetβndx), πΎβ©}) |
39 | 1, 38 | eqtrid 2784 |
1
β’ (π β π = {β¨(Baseβndx), π΅β©,
β¨(+gβndx), + β©,
β¨(TopSetβndx), πΎβ©}) |