![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0tp | Structured version Visualization version GIF version |
Description: An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
Ref | Expression |
---|---|
fz0tp | ⊢ (0...2) = {0, 1, 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12311 | . . . . 5 ⊢ 2 ∈ ℂ | |
2 | 1 | addlidi 11426 | . . . 4 ⊢ (0 + 2) = 2 |
3 | 2 | eqcomi 2737 | . . 3 ⊢ 2 = (0 + 2) |
4 | 3 | oveq2i 7425 | . 2 ⊢ (0...2) = (0...(0 + 2)) |
5 | 0z 12593 | . . 3 ⊢ 0 ∈ ℤ | |
6 | fztp 13583 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...(0 + 2)) = {0, (0 + 1), (0 + 2)} |
8 | eqid 2728 | . . 3 ⊢ 0 = 0 | |
9 | id 22 | . . . 4 ⊢ (0 = 0 → 0 = 0) | |
10 | 0p1e1 12358 | . . . . 5 ⊢ (0 + 1) = 1 | |
11 | 10 | a1i 11 | . . . 4 ⊢ (0 = 0 → (0 + 1) = 1) |
12 | 2 | a1i 11 | . . . 4 ⊢ (0 = 0 → (0 + 2) = 2) |
13 | 9, 11, 12 | tpeq123d 4748 | . . 3 ⊢ (0 = 0 → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
14 | 8, 13 | ax-mp 5 | . 2 ⊢ {0, (0 + 1), (0 + 2)} = {0, 1, 2} |
15 | 4, 7, 14 | 3eqtri 2760 | 1 ⊢ (0...2) = {0, 1, 2} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 {ctp 4628 (class class class)co 7414 0cc0 11132 1c1 11133 + caddc 11135 2c2 12291 ℤcz 12582 ...cfz 13510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 |
This theorem is referenced by: f13idfv 13991 2wlkdlem4 29732 cshw1s2 32675 |
Copyright terms: Public domain | W3C validator |