Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaset Structured version   Visualization version   GIF version

Theorem dvaset 40962
Description: The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvaset.h 𝐻 = (LHyp‘𝐾)
dvaset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvaset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvaset.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
dvaset.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
Assertion
Ref Expression
dvaset ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑓,𝑊,𝑔,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑠)   𝑇(𝑓,𝑔,𝑠)   𝑈(𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   𝑋(𝑓,𝑔,𝑠)

Proof of Theorem dvaset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvaset.u . 2 𝑈 = ((DVecA‘𝐾)‘𝑊)
2 dvaset.h . . . . 5 𝐻 = (LHyp‘𝐾)
32dvafset 40961 . . . 4 (𝐾𝑋 → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
43fveq1d 6922 . . 3 (𝐾𝑋 → ((DVecA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))‘𝑊))
5 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
6 dvaset.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
75, 6eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
87opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), 𝑇⟩)
9 eqidd 2741 . . . . . . . 8 (𝑤 = 𝑊 → (𝑓𝑔) = (𝑓𝑔))
107, 7, 9mpoeq123dv 7525 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)) = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
1110opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩)
12 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = ((EDRing‘𝐾)‘𝑊))
13 dvaset.d . . . . . . . 8 𝐷 = ((EDRing‘𝐾)‘𝑊)
1412, 13eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = 𝐷)
1514opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩ = ⟨(Scalar‘ndx), 𝐷⟩)
168, 11, 15tpeq123d 4773 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩})
17 fveq2 6920 . . . . . . . . 9 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊))
18 dvaset.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
1917, 18eqtr4di 2798 . . . . . . . 8 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸)
20 eqidd 2741 . . . . . . . 8 (𝑤 = 𝑊 → (𝑠𝑓) = (𝑠𝑓))
2119, 7, 20mpoeq123dv 7525 . . . . . . 7 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓)) = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
2221opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩ = ⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩)
2322sneqd 4660 . . . . 5 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩} = {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})
2416, 23uneq12d 4192 . . . 4 (𝑤 = 𝑊 → ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
25 eqid 2740 . . . 4 (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))
26 tpex 7781 . . . . 5 {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∈ V
27 snex 5451 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩} ∈ V
2826, 27unex 7779 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}) ∈ V
2924, 25, 28fvmpt 7029 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))‘𝑊) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
304, 29sylan9eq 2800 . 2 ((𝐾𝑋𝑊𝐻) → ((DVecA‘𝐾)‘𝑊) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
311, 30eqtrid 2792 1 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  {csn 4648  {ctp 4652  cop 4654  cmpt 5249  ccom 5704  cfv 6573  cmpo 7450  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709  EDRingcedring 40710  DVecAcdveca 40959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-oprab 7452  df-mpo 7453  df-dveca 40960
This theorem is referenced by:  dvasca  40963  dvavbase  40970  dvafvadd  40971  dvafvsca  40973  dvaabl  40981
  Copyright terms: Public domain W3C validator