Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaset Structured version   Visualization version   GIF version

Theorem dvaset 39864
Description: The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvaset.h 𝐻 = (LHypβ€˜πΎ)
dvaset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dvaset.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dvaset.d 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
dvaset.u π‘ˆ = ((DVecAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dvaset ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ π‘ˆ = ({⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩}))
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑓,π‘Š,𝑔,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑠)   𝑇(𝑓,𝑔,𝑠)   π‘ˆ(𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   𝑋(𝑓,𝑔,𝑠)

Proof of Theorem dvaset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 dvaset.u . 2 π‘ˆ = ((DVecAβ€˜πΎ)β€˜π‘Š)
2 dvaset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
32dvafset 39863 . . . 4 (𝐾 ∈ 𝑋 β†’ (DVecAβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})))
43fveq1d 6890 . . 3 (𝐾 ∈ 𝑋 β†’ ((DVecAβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩}))β€˜π‘Š))
5 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ ((LTrnβ€˜πΎ)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘Š))
6 dvaset.t . . . . . . . 8 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
75, 6eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ ((LTrnβ€˜πΎ)β€˜π‘€) = 𝑇)
87opeq2d 4879 . . . . . 6 (𝑀 = π‘Š β†’ ⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩ = ⟨(Baseβ€˜ndx), π‘‡βŸ©)
9 eqidd 2733 . . . . . . . 8 (𝑀 = π‘Š β†’ (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔))
107, 7, 9mpoeq123dv 7480 . . . . . . 7 (𝑀 = π‘Š β†’ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)))
1110opeq2d 4879 . . . . . 6 (𝑀 = π‘Š β†’ ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩ = ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩)
12 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ ((EDRingβ€˜πΎ)β€˜π‘€) = ((EDRingβ€˜πΎ)β€˜π‘Š))
13 dvaset.d . . . . . . . 8 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
1412, 13eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ ((EDRingβ€˜πΎ)β€˜π‘€) = 𝐷)
1514opeq2d 4879 . . . . . 6 (𝑀 = π‘Š β†’ ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩ = ⟨(Scalarβ€˜ndx), 𝐷⟩)
168, 11, 15tpeq123d 4751 . . . . 5 (𝑀 = π‘Š β†’ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} = {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩})
17 fveq2 6888 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((TEndoβ€˜πΎ)β€˜π‘€) = ((TEndoβ€˜πΎ)β€˜π‘Š))
18 dvaset.e . . . . . . . . 9 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
1917, 18eqtr4di 2790 . . . . . . . 8 (𝑀 = π‘Š β†’ ((TEndoβ€˜πΎ)β€˜π‘€) = 𝐸)
20 eqidd 2733 . . . . . . . 8 (𝑀 = π‘Š β†’ (π‘ β€˜π‘“) = (π‘ β€˜π‘“))
2119, 7, 20mpoeq123dv 7480 . . . . . . 7 (𝑀 = π‘Š β†’ (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“)) = (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“)))
2221opeq2d 4879 . . . . . 6 (𝑀 = π‘Š β†’ ⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩ = ⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩)
2322sneqd 4639 . . . . 5 (𝑀 = π‘Š β†’ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩} = {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩})
2416, 23uneq12d 4163 . . . 4 (𝑀 = π‘Š β†’ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩}) = ({⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩}))
25 eqid 2732 . . . 4 (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩}))
26 tpex 7730 . . . . 5 {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} ∈ V
27 snex 5430 . . . . 5 {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩} ∈ V
2826, 27unex 7729 . . . 4 ({⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩}) ∈ V
2924, 25, 28fvmpt 6995 . . 3 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩}))β€˜π‘Š) = ({⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩}))
304, 29sylan9eq 2792 . 2 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ ((DVecAβ€˜πΎ)β€˜π‘Š) = ({⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩}))
311, 30eqtrid 2784 1 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ π‘ˆ = ({⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ 𝑇 ↦ (π‘ β€˜π‘“))⟩}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βˆͺ cun 3945  {csn 4627  {ctp 4631  βŸ¨cop 4633   ↦ cmpt 5230   ∘ ccom 5679  β€˜cfv 6540   ∈ cmpo 7407  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196   ·𝑠 cvsca 17197  LHypclh 38843  LTrncltrn 38960  TEndoctendo 39611  EDRingcedring 39612  DVecAcdveca 39861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-oprab 7409  df-mpo 7410  df-dveca 39862
This theorem is referenced by:  dvasca  39865  dvavbase  39872  dvafvadd  39873  dvafvsca  39875  dvaabl  39883
  Copyright terms: Public domain W3C validator