Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaset Structured version   Visualization version   GIF version

Theorem dvaset 41124
Description: The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvaset.h 𝐻 = (LHyp‘𝐾)
dvaset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvaset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvaset.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
dvaset.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
Assertion
Ref Expression
dvaset ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑓,𝑊,𝑔,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑠)   𝑇(𝑓,𝑔,𝑠)   𝑈(𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   𝑋(𝑓,𝑔,𝑠)

Proof of Theorem dvaset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvaset.u . 2 𝑈 = ((DVecA‘𝐾)‘𝑊)
2 dvaset.h . . . . 5 𝐻 = (LHyp‘𝐾)
32dvafset 41123 . . . 4 (𝐾𝑋 → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
43fveq1d 6830 . . 3 (𝐾𝑋 → ((DVecA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))‘𝑊))
5 fveq2 6828 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
6 dvaset.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
75, 6eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
87opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), 𝑇⟩)
9 eqidd 2734 . . . . . . . 8 (𝑤 = 𝑊 → (𝑓𝑔) = (𝑓𝑔))
107, 7, 9mpoeq123dv 7427 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)) = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
1110opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩)
12 fveq2 6828 . . . . . . . 8 (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = ((EDRing‘𝐾)‘𝑊))
13 dvaset.d . . . . . . . 8 𝐷 = ((EDRing‘𝐾)‘𝑊)
1412, 13eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = 𝐷)
1514opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩ = ⟨(Scalar‘ndx), 𝐷⟩)
168, 11, 15tpeq123d 4700 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩})
17 fveq2 6828 . . . . . . . . 9 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊))
18 dvaset.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
1917, 18eqtr4di 2786 . . . . . . . 8 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸)
20 eqidd 2734 . . . . . . . 8 (𝑤 = 𝑊 → (𝑠𝑓) = (𝑠𝑓))
2119, 7, 20mpoeq123dv 7427 . . . . . . 7 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓)) = (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓)))
2221opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩ = ⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩)
2322sneqd 4587 . . . . 5 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩} = {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩})
2416, 23uneq12d 4118 . . . 4 (𝑤 = 𝑊 → ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
25 eqid 2733 . . . 4 (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))
26 tpex 7685 . . . . 5 {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∈ V
27 snex 5376 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩} ∈ V
2826, 27unex 7683 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}) ∈ V
2924, 25, 28fvmpt 6935 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))‘𝑊) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
304, 29sylan9eq 2788 . 2 ((𝐾𝑋𝑊𝐻) → ((DVecA‘𝐾)‘𝑊) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
311, 30eqtrid 2780 1 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cun 3896  {csn 4575  {ctp 4579  cop 4581  cmpt 5174  ccom 5623  cfv 6486  cmpo 7354  ndxcnx 17106  Basecbs 17122  +gcplusg 17163  Scalarcsca 17166   ·𝑠 cvsca 17167  LHypclh 40103  LTrncltrn 40220  TEndoctendo 40871  EDRingcedring 40872  DVecAcdveca 41121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-oprab 7356  df-mpo 7357  df-dveca 41122
This theorem is referenced by:  dvasca  41125  dvavbase  41132  dvafvadd  41133  dvafvsca  41135  dvaabl  41143
  Copyright terms: Public domain W3C validator