Step | Hyp | Ref
| Expression |
1 | | dvaset.u |
. 2
β’ π = ((DVecAβπΎ)βπ) |
2 | | dvaset.h |
. . . . 5
β’ π» = (LHypβπΎ) |
3 | 2 | dvafset 39405 |
. . . 4
β’ (πΎ β π β (DVecAβπΎ) = (π€ β π» β¦ ({β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β©}))) |
4 | 3 | fveq1d 6841 |
. . 3
β’ (πΎ β π β ((DVecAβπΎ)βπ) = ((π€ β π» β¦ ({β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β©}))βπ)) |
5 | | fveq2 6839 |
. . . . . . . 8
β’ (π€ = π β ((LTrnβπΎ)βπ€) = ((LTrnβπΎ)βπ)) |
6 | | dvaset.t |
. . . . . . . 8
β’ π = ((LTrnβπΎ)βπ) |
7 | 5, 6 | eqtr4di 2795 |
. . . . . . 7
β’ (π€ = π β ((LTrnβπΎ)βπ€) = π) |
8 | 7 | opeq2d 4835 |
. . . . . 6
β’ (π€ = π β β¨(Baseβndx),
((LTrnβπΎ)βπ€)β© =
β¨(Baseβndx), πβ©) |
9 | | eqidd 2738 |
. . . . . . . 8
β’ (π€ = π β (π β π) = (π β π)) |
10 | 7, 7, 9 | mpoeq123dv 7426 |
. . . . . . 7
β’ (π€ = π β (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π)) = (π β π, π β π β¦ (π β π))) |
11 | 10 | opeq2d 4835 |
. . . . . 6
β’ (π€ = π β β¨(+gβndx),
(π β
((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β© = β¨(+gβndx),
(π β π, π β π β¦ (π β π))β©) |
12 | | fveq2 6839 |
. . . . . . . 8
β’ (π€ = π β ((EDRingβπΎ)βπ€) = ((EDRingβπΎ)βπ)) |
13 | | dvaset.d |
. . . . . . . 8
β’ π· = ((EDRingβπΎ)βπ) |
14 | 12, 13 | eqtr4di 2795 |
. . . . . . 7
β’ (π€ = π β ((EDRingβπΎ)βπ€) = π·) |
15 | 14 | opeq2d 4835 |
. . . . . 6
β’ (π€ = π β β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β© = β¨(Scalarβndx), π·β©) |
16 | 8, 11, 15 | tpeq123d 4707 |
. . . . 5
β’ (π€ = π β {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β©} = {β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(Scalarβndx), π·β©}) |
17 | | fveq2 6839 |
. . . . . . . . 9
β’ (π€ = π β ((TEndoβπΎ)βπ€) = ((TEndoβπΎ)βπ)) |
18 | | dvaset.e |
. . . . . . . . 9
β’ πΈ = ((TEndoβπΎ)βπ) |
19 | 17, 18 | eqtr4di 2795 |
. . . . . . . 8
β’ (π€ = π β ((TEndoβπΎ)βπ€) = πΈ) |
20 | | eqidd 2738 |
. . . . . . . 8
β’ (π€ = π β (π βπ) = (π βπ)) |
21 | 19, 7, 20 | mpoeq123dv 7426 |
. . . . . . 7
β’ (π€ = π β (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ)) = (π β πΈ, π β π β¦ (π βπ))) |
22 | 21 | opeq2d 4835 |
. . . . . 6
β’ (π€ = π β β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β© = β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©) |
23 | 22 | sneqd 4596 |
. . . . 5
β’ (π€ = π β {β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β©} = {β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©}) |
24 | 16, 23 | uneq12d 4122 |
. . . 4
β’ (π€ = π β ({β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β©}) = ({β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(Scalarβndx), π·β©} βͺ {β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©})) |
25 | | eqid 2737 |
. . . 4
β’ (π€ β π» β¦ ({β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β©})) = (π€ β π» β¦ ({β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β©})) |
26 | | tpex 7673 |
. . . . 5
β’
{β¨(Baseβndx), πβ©, β¨(+gβndx),
(π β π, π β π β¦ (π β π))β©, β¨(Scalarβndx), π·β©} β
V |
27 | | snex 5386 |
. . . . 5
β’ {β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©} β V |
28 | 26, 27 | unex 7672 |
. . . 4
β’
({β¨(Baseβndx), πβ©, β¨(+gβndx),
(π β π, π β π β¦ (π β π))β©, β¨(Scalarβndx), π·β©} βͺ {β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©}) β V |
29 | 24, 25, 28 | fvmpt 6945 |
. . 3
β’ (π β π» β ((π€ β π» β¦ ({β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπΎ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π βπ))β©}))βπ) = ({β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(Scalarβndx), π·β©} βͺ {β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©})) |
30 | 4, 29 | sylan9eq 2797 |
. 2
β’ ((πΎ β π β§ π β π») β ((DVecAβπΎ)βπ) = ({β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(Scalarβndx), π·β©} βͺ {β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©})) |
31 | 1, 30 | eqtrid 2789 |
1
β’ ((πΎ β π β§ π β π») β π = ({β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(Scalarβndx), π·β©} βͺ {β¨(
Β·π βndx), (π β πΈ, π β π β¦ (π βπ))β©})) |