| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzo0to3tp | Structured version Visualization version GIF version | ||
| Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| Ref | Expression |
|---|---|
| fzo0to3tp | ⊢ (0..^3) = {0, 1, 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z 12513 | . . 3 ⊢ 3 ∈ ℤ | |
| 2 | fzoval 13564 | . . 3 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (0..^3) = (0...(3 − 1)) |
| 4 | 3m1e2 12257 | . . . 4 ⊢ (3 − 1) = 2 | |
| 5 | 2cn 12209 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 6 | 5 | addlidi 11310 | . . . 4 ⊢ (0 + 2) = 2 |
| 7 | 4, 6 | eqtr4i 2759 | . . 3 ⊢ (3 − 1) = (0 + 2) |
| 8 | 7 | oveq2i 7365 | . 2 ⊢ (0...(3 − 1)) = (0...(0 + 2)) |
| 9 | 0z 12488 | . . 3 ⊢ 0 ∈ ℤ | |
| 10 | fztp 13484 | . . . 4 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
| 11 | eqidd 2734 | . . . . 5 ⊢ (0 ∈ ℤ → 0 = 0) | |
| 12 | 0p1e1 12251 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 1) = 1) |
| 14 | 6 | a1i 11 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 2) = 2) |
| 15 | 11, 13, 14 | tpeq123d 4702 | . . . 4 ⊢ (0 ∈ ℤ → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
| 16 | 10, 15 | eqtrd 2768 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, 1, 2}) |
| 17 | 9, 16 | ax-mp 5 | . 2 ⊢ (0...(0 + 2)) = {0, 1, 2} |
| 18 | 3, 8, 17 | 3eqtri 2760 | 1 ⊢ (0..^3) = {0, 1, 2} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {ctp 4581 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 − cmin 11353 2c2 12189 3c3 12190 ℤcz 12477 ...cfz 13411 ..^cfzo 13558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 |
| This theorem is referenced by: s3fn 14822 wrd3tpop 14859 eqwrds3 14872 wrdl3s3 14873 trgcgrg 28496 tgcgr4 28512 2pthdlem1 29912 wwlks2onv 29935 elwwlks2ons3im 29936 usgrwwlks2on 29940 umgrwwlks2on 29941 3wlkdlem2 30144 upgr3v3e3cycl 30164 s3rnOLD 32936 s3f1 32937 cyc3evpm 33128 evl1deg2 33549 cos9thpiminplylem1 33818 prodfzo03 34639 circlevma 34678 circlemethhgt 34679 hgt750lemg 34690 hgt750lemb 34692 hgt750lema 34693 hgt750leme 34694 tgoldbachgtde 34696 tgoldbachgt 34699 cycl3grtrilem 48073 cycl3grtri 48074 |
| Copyright terms: Public domain | W3C validator |