![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzo0to3tp | Structured version Visualization version GIF version |
Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to3tp | ⊢ (0..^3) = {0, 1, 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3z 12591 | . . 3 ⊢ 3 ∈ ℤ | |
2 | fzoval 13629 | . . 3 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (0..^3) = (0...(3 − 1)) |
4 | 3m1e2 12336 | . . . 4 ⊢ (3 − 1) = 2 | |
5 | 2cn 12283 | . . . . 5 ⊢ 2 ∈ ℂ | |
6 | 5 | addlidi 11398 | . . . 4 ⊢ (0 + 2) = 2 |
7 | 4, 6 | eqtr4i 2755 | . . 3 ⊢ (3 − 1) = (0 + 2) |
8 | 7 | oveq2i 7412 | . 2 ⊢ (0...(3 − 1)) = (0...(0 + 2)) |
9 | 0z 12565 | . . 3 ⊢ 0 ∈ ℤ | |
10 | fztp 13553 | . . . 4 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)}) | |
11 | eqidd 2725 | . . . . 5 ⊢ (0 ∈ ℤ → 0 = 0) | |
12 | 0p1e1 12330 | . . . . . 6 ⊢ (0 + 1) = 1 | |
13 | 12 | a1i 11 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 1) = 1) |
14 | 6 | a1i 11 | . . . . 5 ⊢ (0 ∈ ℤ → (0 + 2) = 2) |
15 | 11, 13, 14 | tpeq123d 4744 | . . . 4 ⊢ (0 ∈ ℤ → {0, (0 + 1), (0 + 2)} = {0, 1, 2}) |
16 | 10, 15 | eqtrd 2764 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 2)) = {0, 1, 2}) |
17 | 9, 16 | ax-mp 5 | . 2 ⊢ (0...(0 + 2)) = {0, 1, 2} |
18 | 3, 8, 17 | 3eqtri 2756 | 1 ⊢ (0..^3) = {0, 1, 2} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {ctp 4624 (class class class)co 7401 0cc0 11105 1c1 11106 + caddc 11108 − cmin 11440 2c2 12263 3c3 12264 ℤcz 12554 ...cfz 13480 ..^cfzo 13623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 |
This theorem is referenced by: s3fn 14858 wrd3tpop 14895 eqwrds3 14908 wrdl3s3 14909 trgcgrg 28201 tgcgr4 28217 2pthdlem1 29619 wwlks2onv 29642 elwwlks2ons3im 29643 umgrwwlks2on 29646 3wlkdlem2 29848 upgr3v3e3cycl 29868 s3rn 32545 s3f1 32546 cyc3evpm 32743 prodfzo03 34070 circlevma 34109 circlemethhgt 34110 hgt750lemg 34121 hgt750lemb 34123 hgt750lema 34124 hgt750leme 34125 tgoldbachgtde 34127 tgoldbachgt 34130 |
Copyright terms: Public domain | W3C validator |