MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0to3tp Structured version   Visualization version   GIF version

Theorem fzo0to3tp 13720
Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Assertion
Ref Expression
fzo0to3tp (0..^3) = {0, 1, 2}

Proof of Theorem fzo0to3tp
StepHypRef Expression
1 3z 12573 . . 3 3 ∈ ℤ
2 fzoval 13628 . . 3 (3 ∈ ℤ → (0..^3) = (0...(3 − 1)))
31, 2ax-mp 5 . 2 (0..^3) = (0...(3 − 1))
4 3m1e2 12316 . . . 4 (3 − 1) = 2
5 2cn 12268 . . . . 5 2 ∈ ℂ
65addlidi 11369 . . . 4 (0 + 2) = 2
74, 6eqtr4i 2756 . . 3 (3 − 1) = (0 + 2)
87oveq2i 7401 . 2 (0...(3 − 1)) = (0...(0 + 2))
9 0z 12547 . . 3 0 ∈ ℤ
10 fztp 13548 . . . 4 (0 ∈ ℤ → (0...(0 + 2)) = {0, (0 + 1), (0 + 2)})
11 eqidd 2731 . . . . 5 (0 ∈ ℤ → 0 = 0)
12 0p1e1 12310 . . . . . 6 (0 + 1) = 1
1312a1i 11 . . . . 5 (0 ∈ ℤ → (0 + 1) = 1)
146a1i 11 . . . . 5 (0 ∈ ℤ → (0 + 2) = 2)
1511, 13, 14tpeq123d 4715 . . . 4 (0 ∈ ℤ → {0, (0 + 1), (0 + 2)} = {0, 1, 2})
1610, 15eqtrd 2765 . . 3 (0 ∈ ℤ → (0...(0 + 2)) = {0, 1, 2})
179, 16ax-mp 5 . 2 (0...(0 + 2)) = {0, 1, 2}
183, 8, 173eqtri 2757 1 (0..^3) = {0, 1, 2}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {ctp 4596  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  2c2 12248  3c3 12249  cz 12536  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  s3fn  14884  wrd3tpop  14921  eqwrds3  14934  wrdl3s3  14935  trgcgrg  28449  tgcgr4  28465  2pthdlem1  29867  wwlks2onv  29890  elwwlks2ons3im  29891  umgrwwlks2on  29894  3wlkdlem2  30096  upgr3v3e3cycl  30116  s3rnOLD  32874  s3f1  32875  cyc3evpm  33114  evl1deg2  33553  cos9thpiminplylem1  33779  prodfzo03  34601  circlevma  34640  circlemethhgt  34641  hgt750lemg  34652  hgt750lemb  34654  hgt750lema  34655  hgt750leme  34656  tgoldbachgtde  34658  tgoldbachgt  34661  cycl3grtrilem  47949  cycl3grtri  47950
  Copyright terms: Public domain W3C validator