Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhset Structured version   Visualization version   GIF version

Theorem dvhset 39940
Description: The constructed full vector space H for a lattice 𝐾. (Contributed by NM, 17-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhset.h 𝐻 = (LHypβ€˜πΎ)
dvhset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dvhset.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dvhset.d 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
dvhset.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dvhset ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ π‘ˆ = ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
Distinct variable groups:   𝑓,𝑔,𝐻   𝑓,β„Ž,𝑠,𝐾,𝑔   𝑇,β„Ž   𝑓,π‘Š,𝑔,β„Ž,𝑠   𝑓,𝑋,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔,β„Ž,𝑠)   𝑇(𝑓,𝑔,𝑠)   π‘ˆ(𝑓,𝑔,β„Ž,𝑠)   𝐸(𝑓,𝑔,β„Ž,𝑠)   𝐻(β„Ž,𝑠)   𝑋(β„Ž,𝑠)

Proof of Theorem dvhset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 dvhset.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
2 dvhset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
32dvhfset 39939 . . . 4 (𝐾 ∈ 𝑋 β†’ (DVecHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})))
43fveq1d 6890 . . 3 (𝐾 ∈ 𝑋 β†’ ((DVecHβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))β€˜π‘Š))
51, 4eqtrid 2784 . 2 (𝐾 ∈ 𝑋 β†’ π‘ˆ = ((𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))β€˜π‘Š))
6 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ ((LTrnβ€˜πΎ)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘Š))
7 dvhset.t . . . . . . . 8 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
86, 7eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ ((LTrnβ€˜πΎ)β€˜π‘€) = 𝑇)
9 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ ((TEndoβ€˜πΎ)β€˜π‘€) = ((TEndoβ€˜πΎ)β€˜π‘Š))
10 dvhset.e . . . . . . . 8 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
119, 10eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ ((TEndoβ€˜πΎ)β€˜π‘€) = 𝐸)
128, 11xpeq12d 5706 . . . . . 6 (𝑀 = π‘Š β†’ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) = (𝑇 Γ— 𝐸))
1312opeq2d 4879 . . . . 5 (𝑀 = π‘Š β†’ ⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩ = ⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩)
148mpteq1d 5242 . . . . . . . 8 (𝑀 = π‘Š β†’ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž))) = (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž))))
1514opeq2d 4879 . . . . . . 7 (𝑀 = π‘Š β†’ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩ = ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)
1612, 12, 15mpoeq123dv 7480 . . . . . 6 (𝑀 = π‘Š β†’ (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩) = (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩))
1716opeq2d 4879 . . . . 5 (𝑀 = π‘Š β†’ ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩ = ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩)
18 fveq2 6888 . . . . . . 7 (𝑀 = π‘Š β†’ ((EDRingβ€˜πΎ)β€˜π‘€) = ((EDRingβ€˜πΎ)β€˜π‘Š))
19 dvhset.d . . . . . . 7 𝐷 = ((EDRingβ€˜πΎ)β€˜π‘Š)
2018, 19eqtr4di 2790 . . . . . 6 (𝑀 = π‘Š β†’ ((EDRingβ€˜πΎ)β€˜π‘€) = 𝐷)
2120opeq2d 4879 . . . . 5 (𝑀 = π‘Š β†’ ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩ = ⟨(Scalarβ€˜ndx), 𝐷⟩)
2213, 17, 21tpeq123d 4751 . . . 4 (𝑀 = π‘Š β†’ {⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} = {⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩})
23 eqidd 2733 . . . . . . 7 (𝑀 = π‘Š β†’ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩ = ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)
2411, 12, 23mpoeq123dv 7480 . . . . . 6 (𝑀 = π‘Š β†’ (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩) = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩))
2524opeq2d 4879 . . . . 5 (𝑀 = π‘Š β†’ ⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩ = ⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩)
2625sneqd 4639 . . . 4 (𝑀 = π‘Š β†’ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩} = {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})
2722, 26uneq12d 4163 . . 3 (𝑀 = π‘Š β†’ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}) = ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
28 eqid 2732 . . 3 (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
29 tpex 7730 . . . 4 {⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} ∈ V
30 snex 5430 . . . 4 {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩} ∈ V
3129, 30unex 7729 . . 3 ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}) ∈ V
3227, 28, 31fvmpt 6995 . 2 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜πΎ)β€˜π‘€) Γ— ((TEndoβ€˜πΎ)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))β€˜π‘Š) = ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
335, 32sylan9eq 2792 1 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ π‘ˆ = ({⟨(Baseβ€˜ndx), (𝑇 Γ— 𝐸)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (𝑇 Γ— 𝐸), 𝑔 ∈ (𝑇 Γ— 𝐸) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ 𝑇 ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), 𝐷⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 Γ— 𝐸) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βˆͺ cun 3945  {csn 4627  {ctp 4631  βŸ¨cop 4633   ↦ cmpt 5230   Γ— cxp 5673   ∘ ccom 5679  β€˜cfv 6540   ∈ cmpo 7407  1st c1st 7969  2nd c2nd 7970  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196   ·𝑠 cvsca 17197  LHypclh 38843  LTrncltrn 38960  TEndoctendo 39611  EDRingcedring 39612  DVecHcdvh 39937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-oprab 7409  df-mpo 7410  df-dvech 39938
This theorem is referenced by:  dvhsca  39941  dvhvbase  39946  dvhfvadd  39950  dvhfvsca  39959
  Copyright terms: Public domain W3C validator