MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo1to4tp Structured version   Visualization version   GIF version

Theorem fzo1to4tp 13722
Description: A half-open integer range from 1 to 4 is an unordered triple. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fzo1to4tp (1..^4) = {1, 2, 3}

Proof of Theorem fzo1to4tp
StepHypRef Expression
1 4z 12574 . . 3 4 ∈ ℤ
2 fzoval 13628 . . 3 (4 ∈ ℤ → (1..^4) = (1...(4 − 1)))
31, 2ax-mp 5 . 2 (1..^4) = (1...(4 − 1))
4 4m1e3 12317 . . . 4 (4 − 1) = 3
5 df-3 12257 . . . 4 3 = (2 + 1)
6 2cn 12268 . . . . 5 2 ∈ ℂ
7 ax-1cn 11133 . . . . 5 1 ∈ ℂ
86, 7addcomi 11372 . . . 4 (2 + 1) = (1 + 2)
94, 5, 83eqtri 2757 . . 3 (4 − 1) = (1 + 2)
109oveq2i 7401 . 2 (1...(4 − 1)) = (1...(1 + 2))
11 1z 12570 . . 3 1 ∈ ℤ
12 fztp 13548 . . . 4 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
13 eqidd 2731 . . . . 5 (1 ∈ ℤ → 1 = 1)
14 1p1e2 12313 . . . . . 6 (1 + 1) = 2
1514a1i 11 . . . . 5 (1 ∈ ℤ → (1 + 1) = 2)
16 1p2e3 12331 . . . . . 6 (1 + 2) = 3
1716a1i 11 . . . . 5 (1 ∈ ℤ → (1 + 2) = 3)
1813, 15, 17tpeq123d 4715 . . . 4 (1 ∈ ℤ → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
1912, 18eqtrd 2765 . . 3 (1 ∈ ℤ → (1...(1 + 2)) = {1, 2, 3})
2011, 19ax-mp 5 . 2 (1...(1 + 2)) = {1, 2, 3}
213, 10, 203eqtri 2757 1 (1..^4) = {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {ctp 4596  (class class class)co 7390  1c1 11076   + caddc 11078  cmin 11412  2c2 12248  3c3 12249  4c4 12250  cz 12536  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  fmtno4prmfac  47577  fmtnofz04prm  47582  gpgprismgr4cycllem7  48095
  Copyright terms: Public domain W3C validator