Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafset Structured version   Visualization version   GIF version

Theorem dvafset 39870
Description: The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypothesis
Ref Expression
dvaset.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
dvafset (𝐾 ∈ 𝑉 β†’ (DVecAβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})))
Distinct variable groups:   𝑀,𝐻   𝑓,𝑔,𝑠,𝑀,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔,𝑠)   𝑉(𝑀,𝑓,𝑔,𝑠)

Proof of Theorem dvafset
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 dvaset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2790 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
65fveq1d 6893 . . . . . . 7 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
76opeq2d 4880 . . . . . 6 (π‘˜ = 𝐾 β†’ ⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩ = ⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩)
8 eqidd 2733 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔))
96, 6, 8mpoeq123dv 7483 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔)))
109opeq2d 4880 . . . . . 6 (π‘˜ = 𝐾 β†’ ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩ = ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩)
11 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (EDRingβ€˜π‘˜) = (EDRingβ€˜πΎ))
1211fveq1d 6893 . . . . . . 7 (π‘˜ = 𝐾 β†’ ((EDRingβ€˜π‘˜)β€˜π‘€) = ((EDRingβ€˜πΎ)β€˜π‘€))
1312opeq2d 4880 . . . . . 6 (π‘˜ = 𝐾 β†’ ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩ = ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩)
147, 10, 13tpeq123d 4752 . . . . 5 (π‘˜ = 𝐾 β†’ {⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} = {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩})
15 fveq2 6891 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (TEndoβ€˜π‘˜) = (TEndoβ€˜πΎ))
1615fveq1d 6893 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((TEndoβ€˜π‘˜)β€˜π‘€) = ((TEndoβ€˜πΎ)β€˜π‘€))
17 eqidd 2733 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (π‘ β€˜π‘“) = (π‘ β€˜π‘“))
1816, 6, 17mpoeq123dv 7483 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (π‘ β€˜π‘“)) = (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“)))
1918opeq2d 4880 . . . . . 6 (π‘˜ = 𝐾 β†’ ⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩ = ⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩)
2019sneqd 4640 . . . . 5 (π‘˜ = 𝐾 β†’ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩} = {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})
2114, 20uneq12d 4164 . . . 4 (π‘˜ = 𝐾 β†’ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩}) = ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩}))
224, 21mpteq12dv 5239 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})))
23 df-dveca 39869 . . 3 DVecA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})))
2422, 23, 3mptfvmpt 7229 . 2 (𝐾 ∈ V β†’ (DVecAβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})))
251, 24syl 17 1 (𝐾 ∈ 𝑉 β†’ (DVecAβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜πΎ)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆͺ cun 3946  {csn 4628  {ctp 4632  βŸ¨cop 4634   ↦ cmpt 5231   ∘ ccom 5680  β€˜cfv 6543   ∈ cmpo 7410  ndxcnx 17125  Basecbs 17143  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  LHypclh 38850  LTrncltrn 38967  TEndoctendo 39618  EDRingcedring 39619  DVecAcdveca 39868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-oprab 7412  df-mpo 7413  df-dveca 39869
This theorem is referenced by:  dvaset  39871
  Copyright terms: Public domain W3C validator