Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafset Structured version   Visualization version   GIF version

Theorem dvafset 39044
Description: The constructed partial vector space A for a lattice 𝐾. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypothesis
Ref Expression
dvaset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dvafset (𝐾𝑉 → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
Distinct variable groups:   𝑤,𝐻   𝑓,𝑔,𝑠,𝑤,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔,𝑠)   𝑉(𝑤,𝑓,𝑔,𝑠)

Proof of Theorem dvafset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3452 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6792 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dvaset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2791 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6792 . . . . . . . 8 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6794 . . . . . . 7 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76opeq2d 4813 . . . . . 6 (𝑘 = 𝐾 → ⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩)
8 eqidd 2734 . . . . . . . 8 (𝑘 = 𝐾 → (𝑓𝑔) = (𝑓𝑔))
96, 6, 8mpoeq123dv 7370 . . . . . . 7 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)))
109opeq2d 4813 . . . . . 6 (𝑘 = 𝐾 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩)
11 fveq2 6792 . . . . . . . 8 (𝑘 = 𝐾 → (EDRing‘𝑘) = (EDRing‘𝐾))
1211fveq1d 6794 . . . . . . 7 (𝑘 = 𝐾 → ((EDRing‘𝑘)‘𝑤) = ((EDRing‘𝐾)‘𝑤))
1312opeq2d 4813 . . . . . 6 (𝑘 = 𝐾 → ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩ = ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩)
147, 10, 13tpeq123d 4687 . . . . 5 (𝑘 = 𝐾 → {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩})
15 fveq2 6792 . . . . . . . . 9 (𝑘 = 𝐾 → (TEndo‘𝑘) = (TEndo‘𝐾))
1615fveq1d 6794 . . . . . . . 8 (𝑘 = 𝐾 → ((TEndo‘𝑘)‘𝑤) = ((TEndo‘𝐾)‘𝑤))
17 eqidd 2734 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠𝑓) = (𝑠𝑓))
1816, 6, 17mpoeq123dv 7370 . . . . . . 7 (𝑘 = 𝐾 → (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓)))
1918opeq2d 4813 . . . . . 6 (𝑘 = 𝐾 → ⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩ = ⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩)
2019sneqd 4576 . . . . 5 (𝑘 = 𝐾 → {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩} = {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})
2114, 20uneq12d 4101 . . . 4 (𝑘 = 𝐾 → ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩}))
224, 21mpteq12dv 5168 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩})) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
23 df-dveca 39043 . . 3 DVecA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩})))
2422, 23, 3mptfvmpt 7124 . 2 (𝐾 ∈ V → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
251, 24syl 17 1 (𝐾𝑉 → (DVecA‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑠𝑓))⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  Vcvv 3434  cun 3887  {csn 4564  {ctp 4568  cop 4570  cmpt 5160  ccom 5595  cfv 6447  cmpo 7297  ndxcnx 16922  Basecbs 16940  +gcplusg 16990  Scalarcsca 16993   ·𝑠 cvsca 16994  LHypclh 38024  LTrncltrn 38141  TEndoctendo 38792  EDRingcedring 38793  DVecAcdveca 39042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-oprab 7299  df-mpo 7300  df-dveca 39043
This theorem is referenced by:  dvaset  39045
  Copyright terms: Public domain W3C validator