Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgval Structured version   Visualization version   GIF version

Theorem idlsrgval 33496
Description: Lemma for idlsrgbas 33497 through idlsrgtset 33501. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgval.1 𝐼 = (LIdeal‘𝑅)
idlsrgval.2 = (LSSum‘𝑅)
idlsrgval.3 𝐺 = (mulGrp‘𝑅)
idlsrgval.4 = (LSSum‘𝐺)
Assertion
Ref Expression
idlsrgval (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
Distinct variable groups:   𝑖,𝐼,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   (𝑖,𝑗)   (𝑖,𝑗)   𝐺(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem idlsrgval
Dummy variables 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝑅𝑉𝑅 ∈ V)
2 fvexd 6935 . . . 4 (𝑟 = 𝑅 → (LIdeal‘𝑟) ∈ V)
3 simpr 484 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → 𝑏 = (LIdeal‘𝑟))
4 simpl 482 . . . . . . . . . 10 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → 𝑟 = 𝑅)
54fveq2d 6924 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (LIdeal‘𝑟) = (LIdeal‘𝑅))
63, 5eqtrd 2780 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → 𝑏 = (LIdeal‘𝑅))
7 idlsrgval.1 . . . . . . . 8 𝐼 = (LIdeal‘𝑅)
86, 7eqtr4di 2798 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → 𝑏 = 𝐼)
98opeq2d 4904 . . . . . 6 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐼⟩)
104fveq2d 6924 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (LSSum‘𝑟) = (LSSum‘𝑅))
11 idlsrgval.2 . . . . . . . 8 = (LSSum‘𝑅)
1210, 11eqtr4di 2798 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (LSSum‘𝑟) = )
1312opeq2d 4904 . . . . . 6 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ⟨(+g‘ndx), (LSSum‘𝑟)⟩ = ⟨(+g‘ndx), ⟩)
144fveq2d 6924 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (RSpan‘𝑟) = (RSpan‘𝑅))
154fveq2d 6924 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (mulGrp‘𝑟) = (mulGrp‘𝑅))
16 idlsrgval.3 . . . . . . . . . . . . 13 𝐺 = (mulGrp‘𝑅)
1715, 16eqtr4di 2798 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (mulGrp‘𝑟) = 𝐺)
1817fveq2d 6924 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (LSSum‘(mulGrp‘𝑟)) = (LSSum‘𝐺))
19 idlsrgval.4 . . . . . . . . . . 11 = (LSSum‘𝐺)
2018, 19eqtr4di 2798 . . . . . . . . . 10 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (LSSum‘(mulGrp‘𝑟)) = )
2120oveqd 7465 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (𝑖(LSSum‘(mulGrp‘𝑟))𝑗) = (𝑖 𝑗))
2214, 21fveq12d 6927 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)) = ((RSpan‘𝑅)‘(𝑖 𝑗)))
238, 8, 22mpoeq123dv 7525 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗))) = (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗))))
2423opeq2d 4904 . . . . . 6 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ⟨(.r‘ndx), (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))⟩ = ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩)
259, 13, 24tpeq123d 4773 . . . . 5 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (LSSum‘𝑟)⟩, ⟨(.r‘ndx), (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))⟩} = {⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩})
268rabeqdv 3459 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → {𝑗𝑏 ∣ ¬ 𝑖𝑗} = {𝑗𝐼 ∣ ¬ 𝑖𝑗})
278, 26mpteq12dv 5257 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗}) = (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}))
2827rneqd 5963 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗}) = ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}))
2928opeq2d 4904 . . . . . 6 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ⟨(TopSet‘ndx), ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗})⟩ = ⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩)
308sseq2d 4041 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ({𝑖, 𝑗} ⊆ 𝑏 ↔ {𝑖, 𝑗} ⊆ 𝐼))
3130anbi1d 630 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → (({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗) ↔ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)))
3231opabbidv 5232 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)} = {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)})
3332opeq2d 4904 . . . . . 6 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)}⟩ = ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩)
3429, 33preq12d 4766 . . . . 5 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → {⟨(TopSet‘ndx), ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)}⟩} = {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})
3525, 34uneq12d 4192 . . . 4 ((𝑟 = 𝑅𝑏 = (LIdeal‘𝑟)) → ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (LSSum‘𝑟)⟩, ⟨(.r‘ndx), (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
362, 35csbied 3959 . . 3 (𝑟 = 𝑅(LIdeal‘𝑟) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (LSSum‘𝑟)⟩, ⟨(.r‘ndx), (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
37 df-idlsrg 33494 . . 3 IDLsrg = (𝑟 ∈ V ↦ (LIdeal‘𝑟) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (LSSum‘𝑟)⟩, ⟨(.r‘ndx), (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)}⟩}))
38 tpex 7781 . . . 4 {⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∈ V
39 prex 5452 . . . 4 {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩} ∈ V
4038, 39unex 7779 . . 3 ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}) ∈ V
4136, 37, 40fvmpt 7029 . 2 (𝑅 ∈ V → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
421, 41syl 17 1 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  csb 3921  cun 3974  wss 3976  {cpr 4650  {ctp 4652  cop 4654  {copab 5228  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  TopSetcts 17317  lecple 17318  LSSumclsm 19676  mulGrpcmgp 20161  LIdealclidl 21239  RSpancrsp 21240  IDLsrgcidlsrg 33493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-idlsrg 33494
This theorem is referenced by:  idlsrgbas  33497  idlsrgplusg  33498  idlsrgmulr  33500  idlsrgtset  33501
  Copyright terms: Public domain W3C validator