MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposco Structured version   Visualization version   GIF version

Theorem tposco 8239
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)

Proof of Theorem tposco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coass 6241 . 2 ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
2 dftpos4 8227 . 2 tpos (𝐹𝐺) = ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
3 dftpos4 8227 . . 3 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
43coeq2i 5827 . 2 (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
51, 2, 43eqtr4i 2763 1 tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cun 3915  c0 4299  {csn 4592   cuni 4874  cmpt 5191   × cxp 5639  ccnv 5640  ccom 5645  tpos ctpos 8207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-tpos 8208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator