MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposco Structured version   Visualization version   GIF version

Theorem tposco 8263
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)

Proof of Theorem tposco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coass 6269 . 2 ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
2 dftpos4 8251 . 2 tpos (𝐹𝐺) = ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
3 dftpos4 8251 . . 3 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
43coeq2i 5863 . 2 (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
51, 2, 43eqtr4i 2766 1 tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  Vcvv 3471  cun 3945  c0 4323  {csn 4629   cuni 4908  cmpt 5231   × cxp 5676  ccnv 5677  ccom 5682  tpos ctpos 8231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556  df-tpos 8232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator