MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposco Structured version   Visualization version   GIF version

Theorem tposco 8298
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)

Proof of Theorem tposco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coass 6296 . 2 ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
2 dftpos4 8286 . 2 tpos (𝐹𝐺) = ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
3 dftpos4 8286 . . 3 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
43coeq2i 5885 . 2 (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
51, 2, 43eqtr4i 2778 1 tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cun 3974  c0 4352  {csn 4648   cuni 4931  cmpt 5249   × cxp 5698  ccnv 5699  ccom 5704  tpos ctpos 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-tpos 8267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator