MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposco Structured version   Visualization version   GIF version

Theorem tposco 8044
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)

Proof of Theorem tposco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coass 6158 . 2 ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
2 dftpos4 8032 . 2 tpos (𝐹𝐺) = ((𝐹𝐺) ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
3 dftpos4 8032 . . 3 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
43coeq2i 5758 . 2 (𝐹 ∘ tpos 𝐺) = (𝐹 ∘ (𝐺 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
51, 2, 43eqtr4i 2776 1 tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3422  cun 3881  c0 4253  {csn 4558   cuni 4836  cmpt 5153   × cxp 5578  ccnv 5579  ccom 5584  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-tpos 8013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator