![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0vusgr | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, represented by a hypergraph, is a simple graph. (Contributed by AV, 5-Dec-2020.) |
Ref | Expression |
---|---|
uhgr0vusgr | ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ UHGraph) | |
2 | eqid 2778 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2778 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 2, 3 | uhgr0v0e 26585 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (Edg‘𝐺) = ∅) |
5 | uhgriedg0edg0 26475 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
6 | 5 | adantr 474 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
7 | 4, 6 | mpbid 224 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) |
8 | 1, 7 | usgr0e 26583 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∅c0 4141 ‘cfv 6135 Vtxcvtx 26344 iEdgciedg 26345 Edgcedg 26395 UHGraphcuhgr 26404 USGraphcusgr 26498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fv 6143 df-edg 26396 df-uhgr 26406 df-usgr 26500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |