MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0vusgr Structured version   Visualization version   GIF version

Theorem uhgr0vusgr 29222
Description: The null graph, with no vertices, represented by a hypergraph, is a simple graph. (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
uhgr0vusgr ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ USGraph)

Proof of Theorem uhgr0vusgr
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ UHGraph)
2 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2733 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3uhgr0v0e 29218 . . 3 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (Edg‘𝐺) = ∅)
5 uhgriedg0edg0 29107 . . . 4 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
65adantr 480 . . 3 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
74, 6mpbid 232 . 2 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
81, 7usgr0e 29216 1 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  c0 4282  cfv 6486  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027  UHGraphcuhgr 29036  USGraphcusgr 29129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494  df-edg 29028  df-uhgr 29038  df-usgr 29131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator