MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0vusgr Structured version   Visualization version   GIF version

Theorem uhgr0vusgr 29226
Description: The null graph, with no vertices, represented by a hypergraph, is a simple graph. (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
uhgr0vusgr ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ USGraph)

Proof of Theorem uhgr0vusgr
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ UHGraph)
2 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2736 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3uhgr0v0e 29222 . . 3 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (Edg‘𝐺) = ∅)
5 uhgriedg0edg0 29111 . . . 4 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
65adantr 480 . . 3 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
74, 6mpbid 232 . 2 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
81, 7usgr0e 29220 1 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4313  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  UHGraphcuhgr 29040  USGraphcusgr 29133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544  df-edg 29032  df-uhgr 29042  df-usgr 29135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator