MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan Structured version   Visualization version   GIF version

Theorem uhgrspan 29324
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspan (𝜑𝑆 ∈ UHGraph)

Proof of Theorem uhgrspan
StepHypRef Expression
1 uhgrspan.g . 2 (𝜑𝐺 ∈ UHGraph)
2 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
3 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
4 uhgrspan.s . . 3 (𝜑𝑆𝑊)
5 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
6 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
72, 3, 4, 5, 6, 1uhgrspansubgr 29323 . 2 (𝜑𝑆 SubGraph 𝐺)
8 subuhgr 29318 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph)
91, 7, 8syl2anc 584 1 (𝜑𝑆 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   class class class wbr 5148  cres 5691  cfv 6563  Vtxcvtx 29028  iEdgciedg 29029  UHGraphcuhgr 29088   SubGraph csubgr 29299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-edg 29080  df-uhgr 29090  df-subgr 29300
This theorem is referenced by:  uhgrspanop  29328
  Copyright terms: Public domain W3C validator