Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspan | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Ref | Expression |
---|---|
uhgrspan | ⊢ (𝜑 → 𝑆 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
2 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
5 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
6 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
7 | 2, 3, 4, 5, 6, 1 | uhgrspansubgr 27947 | . 2 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
8 | subuhgr 27942 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph) | |
9 | 1, 7, 8 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 class class class wbr 5092 ↾ cres 5622 ‘cfv 6479 Vtxcvtx 27655 iEdgciedg 27656 UHGraphcuhgr 27715 SubGraph csubgr 27923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-edg 27707 df-uhgr 27717 df-subgr 27924 |
This theorem is referenced by: uhgrspanop 27952 |
Copyright terms: Public domain | W3C validator |