Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspan | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Ref | Expression |
---|---|
uhgrspan | ⊢ (𝜑 → 𝑆 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
2 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
5 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
6 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
7 | 2, 3, 4, 5, 6, 1 | uhgrspansubgr 27686 | . 2 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
8 | subuhgr 27681 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph) | |
9 | 1, 7, 8 | syl2anc 583 | 1 ⊢ (𝜑 → 𝑆 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 class class class wbr 5077 ↾ cres 5593 ‘cfv 6447 Vtxcvtx 27394 iEdgciedg 27395 UHGraphcuhgr 27454 SubGraph csubgr 27662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-fv 6455 df-edg 27446 df-uhgr 27456 df-subgr 27663 |
This theorem is referenced by: uhgrspanop 27691 |
Copyright terms: Public domain | W3C validator |