| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan | Structured version Visualization version GIF version | ||
| Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is a hypergraph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
| uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| Ref | Expression |
|---|---|
| uhgrspan | ⊢ (𝜑 → 𝑆 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
| 2 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 5 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
| 6 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
| 7 | 2, 3, 4, 5, 6, 1 | uhgrspansubgr 29271 | . 2 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
| 8 | subuhgr 29266 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UHGraph) | |
| 9 | 1, 7, 8 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ↾ cres 5621 ‘cfv 6486 Vtxcvtx 28976 iEdgciedg 28977 UHGraphcuhgr 29036 SubGraph csubgr 29247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-edg 29028 df-uhgr 29038 df-subgr 29248 |
| This theorem is referenced by: uhgrspanop 29276 |
| Copyright terms: Public domain | W3C validator |