MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspan Structured version   Visualization version   GIF version

Theorem upgrspan 27235
Description: A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
upgrspan.g (𝜑𝐺 ∈ UPGraph)
Assertion
Ref Expression
upgrspan (𝜑𝑆 ∈ UPGraph)

Proof of Theorem upgrspan
StepHypRef Expression
1 upgrspan.g . 2 (𝜑𝐺 ∈ UPGraph)
2 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
3 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
4 uhgrspan.s . . 3 (𝜑𝑆𝑊)
5 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
6 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
7 upgruhgr 27047 . . . 4 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81, 7syl 17 . . 3 (𝜑𝐺 ∈ UHGraph)
92, 3, 4, 5, 6, 8uhgrspansubgr 27233 . 2 (𝜑𝑆 SubGraph 𝐺)
10 subupgr 27229 . 2 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
111, 9, 10syl2anc 587 1 (𝜑𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114   class class class wbr 5030  cres 5527  cfv 6339  Vtxcvtx 26941  iEdgciedg 26942  UHGraphcuhgr 27001  UPGraphcupgr 27025   SubGraph csubgr 27209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-edg 26993  df-uhgr 27003  df-upgr 27027  df-subgr 27210
This theorem is referenced by:  upgrspanop  27239
  Copyright terms: Public domain W3C validator