Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrspan | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
upgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
Ref | Expression |
---|---|
upgrspan | ⊢ (𝜑 → 𝑆 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrspan.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
2 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
5 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
6 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
7 | upgruhgr 27047 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
9 | 2, 3, 4, 5, 6, 8 | uhgrspansubgr 27233 | . 2 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
10 | subupgr 27229 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph) | |
11 | 1, 9, 10 | syl2anc 587 | 1 ⊢ (𝜑 → 𝑆 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ↾ cres 5527 ‘cfv 6339 Vtxcvtx 26941 iEdgciedg 26942 UHGraphcuhgr 27001 UPGraphcupgr 27025 SubGraph csubgr 27209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-edg 26993 df-uhgr 27003 df-upgr 27027 df-subgr 27210 |
This theorem is referenced by: upgrspanop 27239 |
Copyright terms: Public domain | W3C validator |