MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspan Structured version   Visualization version   GIF version

Theorem upgrspan 29220
Description: A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
upgrspan.g (𝜑𝐺 ∈ UPGraph)
Assertion
Ref Expression
upgrspan (𝜑𝑆 ∈ UPGraph)

Proof of Theorem upgrspan
StepHypRef Expression
1 upgrspan.g . 2 (𝜑𝐺 ∈ UPGraph)
2 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
3 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
4 uhgrspan.s . . 3 (𝜑𝑆𝑊)
5 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
6 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
7 upgruhgr 29029 . . . 4 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81, 7syl 17 . . 3 (𝜑𝐺 ∈ UHGraph)
92, 3, 4, 5, 6, 8uhgrspansubgr 29218 . 2 (𝜑𝑆 SubGraph 𝐺)
10 subupgr 29214 . 2 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
111, 9, 10syl2anc 584 1 (𝜑𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5107  cres 5640  cfv 6511  Vtxcvtx 28923  iEdgciedg 28924  UHGraphcuhgr 28983  UPGraphcupgr 29007   SubGraph csubgr 29194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-subgr 29195
This theorem is referenced by:  upgrspanop  29224
  Copyright terms: Public domain W3C validator