Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrspan | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
upgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
Ref | Expression |
---|---|
upgrspan | ⊢ (𝜑 → 𝑆 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrspan.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
2 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
5 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
6 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
7 | upgruhgr 27350 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
9 | 2, 3, 4, 5, 6, 8 | uhgrspansubgr 27536 | . 2 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
10 | subupgr 27532 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph) | |
11 | 1, 9, 10 | syl2anc 587 | 1 ⊢ (𝜑 → 𝑆 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 class class class wbr 5070 ↾ cres 5581 ‘cfv 6415 Vtxcvtx 27244 iEdgciedg 27245 UHGraphcuhgr 27304 UPGraphcupgr 27328 SubGraph csubgr 27512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-fv 6423 df-edg 27296 df-uhgr 27306 df-upgr 27330 df-subgr 27513 |
This theorem is referenced by: upgrspanop 27542 |
Copyright terms: Public domain | W3C validator |