MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspan Structured version   Visualization version   GIF version

Theorem upgrspan 29273
Description: A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
upgrspan.g (𝜑𝐺 ∈ UPGraph)
Assertion
Ref Expression
upgrspan (𝜑𝑆 ∈ UPGraph)

Proof of Theorem upgrspan
StepHypRef Expression
1 upgrspan.g . 2 (𝜑𝐺 ∈ UPGraph)
2 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
3 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
4 uhgrspan.s . . 3 (𝜑𝑆𝑊)
5 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
6 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
7 upgruhgr 29082 . . . 4 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81, 7syl 17 . . 3 (𝜑𝐺 ∈ UHGraph)
92, 3, 4, 5, 6, 8uhgrspansubgr 29271 . 2 (𝜑𝑆 SubGraph 𝐺)
10 subupgr 29267 . 2 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
111, 9, 10syl2anc 584 1 (𝜑𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5093  cres 5621  cfv 6486  Vtxcvtx 28976  iEdgciedg 28977  UHGraphcuhgr 29036  UPGraphcupgr 29060   SubGraph csubgr 29247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-subgr 29248
This theorem is referenced by:  upgrspanop  29277
  Copyright terms: Public domain W3C validator