MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspan Structured version   Visualization version   GIF version

Theorem upgrspan 27538
Description: A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
upgrspan.g (𝜑𝐺 ∈ UPGraph)
Assertion
Ref Expression
upgrspan (𝜑𝑆 ∈ UPGraph)

Proof of Theorem upgrspan
StepHypRef Expression
1 upgrspan.g . 2 (𝜑𝐺 ∈ UPGraph)
2 uhgrspan.v . . 3 𝑉 = (Vtx‘𝐺)
3 uhgrspan.e . . 3 𝐸 = (iEdg‘𝐺)
4 uhgrspan.s . . 3 (𝜑𝑆𝑊)
5 uhgrspan.q . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
6 uhgrspan.r . . 3 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
7 upgruhgr 27350 . . . 4 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
81, 7syl 17 . . 3 (𝜑𝐺 ∈ UHGraph)
92, 3, 4, 5, 6, 8uhgrspansubgr 27536 . 2 (𝜑𝑆 SubGraph 𝐺)
10 subupgr 27532 . 2 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
111, 9, 10syl2anc 587 1 (𝜑𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112   class class class wbr 5070  cres 5581  cfv 6415  Vtxcvtx 27244  iEdgciedg 27245  UHGraphcuhgr 27304  UPGraphcupgr 27328   SubGraph csubgr 27512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3713  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-fv 6423  df-edg 27296  df-uhgr 27306  df-upgr 27330  df-subgr 27513
This theorem is referenced by:  upgrspanop  27542
  Copyright terms: Public domain W3C validator