MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspanop Structured version   Visualization version   GIF version

Theorem uhgrspanop 29272
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrspanop (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph)

Proof of Theorem uhgrspanop
StepHypRef Expression
1 uhgrspanop.v . 2 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . 2 𝐸 = (iEdg‘𝐺)
3 opex 5404 . . 3 𝑉, (𝐸𝐴)⟩ ∈ V
43a1i 11 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ V)
51fvexi 6836 . . . 4 𝑉 ∈ V
62fvexi 6836 . . . . 5 𝐸 ∈ V
76resex 5978 . . . 4 (𝐸𝐴) ∈ V
85, 7opvtxfvi 28985 . . 3 (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉
98a1i 11 . 2 (𝐺 ∈ UHGraph → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
105, 7opiedgfvi 28986 . . 3 (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴)
1110a1i 11 . 2 (𝐺 ∈ UHGraph → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
12 id 22 . 2 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph)
131, 2, 4, 9, 11, 12uhgrspan 29268 1 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cres 5618  cfv 6481  Vtxcvtx 28972  iEdgciedg 28973  UHGraphcuhgr 29032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-1st 7921  df-2nd 7922  df-vtx 28974  df-iedg 28975  df-edg 29024  df-uhgr 29034  df-subgr 29244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator