| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspanop | Structured version Visualization version GIF version | ||
| Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrspanop | ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspanop.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrspanop.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | opex 5439 | . . 3 ⊢ 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V) |
| 5 | 1 | fvexi 6890 | . . . 4 ⊢ 𝑉 ∈ V |
| 6 | 2 | fvexi 6890 | . . . . 5 ⊢ 𝐸 ∈ V |
| 7 | 6 | resex 6016 | . . . 4 ⊢ (𝐸 ↾ 𝐴) ∈ V |
| 8 | 5, 7 | opvtxfvi 28988 | . . 3 ⊢ (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉 |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉) |
| 10 | 5, 7 | opiedgfvi 28989 | . . 3 ⊢ (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴)) |
| 12 | id 22 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
| 13 | 1, 2, 4, 9, 11, 12 | uhgrspan 29271 | 1 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ↾ cres 5656 ‘cfv 6531 Vtxcvtx 28975 iEdgciedg 28976 UHGraphcuhgr 29035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-1st 7988 df-2nd 7989 df-vtx 28977 df-iedg 28978 df-edg 29027 df-uhgr 29037 df-subgr 29247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |