Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspanop | Structured version Visualization version GIF version |
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrspanop | ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspanop.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrspanop.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | opex 5379 | . . 3 ⊢ 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V) |
5 | 1 | fvexi 6788 | . . . 4 ⊢ 𝑉 ∈ V |
6 | 2 | fvexi 6788 | . . . . 5 ⊢ 𝐸 ∈ V |
7 | 6 | resex 5939 | . . . 4 ⊢ (𝐸 ↾ 𝐴) ∈ V |
8 | 5, 7 | opvtxfvi 27379 | . . 3 ⊢ (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉 |
9 | 8 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉) |
10 | 5, 7 | opiedgfvi 27380 | . . 3 ⊢ (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴) |
11 | 10 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴)) |
12 | id 22 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
13 | 1, 2, 4, 9, 11, 12 | uhgrspan 27659 | 1 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ↾ cres 5591 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 UHGraphcuhgr 27426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-1st 7831 df-2nd 7832 df-vtx 27368 df-iedg 27369 df-edg 27418 df-uhgr 27428 df-subgr 27635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |