| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspanop | Structured version Visualization version GIF version | ||
| Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrspanop | ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspanop.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrspanop.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | opex 5427 | . . 3 ⊢ 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V) |
| 5 | 1 | fvexi 6875 | . . . 4 ⊢ 𝑉 ∈ V |
| 6 | 2 | fvexi 6875 | . . . . 5 ⊢ 𝐸 ∈ V |
| 7 | 6 | resex 6003 | . . . 4 ⊢ (𝐸 ↾ 𝐴) ∈ V |
| 8 | 5, 7 | opvtxfvi 28943 | . . 3 ⊢ (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉 |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉) |
| 10 | 5, 7 | opiedgfvi 28944 | . . 3 ⊢ (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴)) |
| 12 | id 22 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
| 13 | 1, 2, 4, 9, 11, 12 | uhgrspan 29226 | 1 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ↾ cres 5643 ‘cfv 6514 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-1st 7971 df-2nd 7972 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-subgr 29202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |