MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspanop Structured version   Visualization version   GIF version

Theorem uhgrspanop 27663
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrspanop (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph)

Proof of Theorem uhgrspanop
StepHypRef Expression
1 uhgrspanop.v . 2 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . 2 𝐸 = (iEdg‘𝐺)
3 opex 5379 . . 3 𝑉, (𝐸𝐴)⟩ ∈ V
43a1i 11 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ V)
51fvexi 6788 . . . 4 𝑉 ∈ V
62fvexi 6788 . . . . 5 𝐸 ∈ V
76resex 5939 . . . 4 (𝐸𝐴) ∈ V
85, 7opvtxfvi 27379 . . 3 (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉
98a1i 11 . 2 (𝐺 ∈ UHGraph → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
105, 7opiedgfvi 27380 . . 3 (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴)
1110a1i 11 . 2 (𝐺 ∈ UHGraph → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
12 id 22 . 2 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph)
131, 2, 4, 9, 11, 12uhgrspan 27659 1 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cres 5591  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-1st 7831  df-2nd 7832  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-subgr 27635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator