Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspanop | Structured version Visualization version GIF version |
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrspanop | ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspanop.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrspanop.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | opex 5328 | . . 3 ⊢ 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V) |
5 | 1 | fvexi 6677 | . . . 4 ⊢ 𝑉 ∈ V |
6 | 2 | fvexi 6677 | . . . . 5 ⊢ 𝐸 ∈ V |
7 | 6 | resex 5876 | . . . 4 ⊢ (𝐸 ↾ 𝐴) ∈ V |
8 | 5, 7 | opvtxfvi 26914 | . . 3 ⊢ (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉 |
9 | 8 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉) |
10 | 5, 7 | opiedgfvi 26915 | . . 3 ⊢ (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴) |
11 | 10 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴)) |
12 | id 22 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
13 | 1, 2, 4, 9, 11, 12 | uhgrspan 27194 | 1 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4531 ↾ cres 5530 ‘cfv 6340 Vtxcvtx 26901 iEdgciedg 26902 UHGraphcuhgr 26961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-1st 7699 df-2nd 7700 df-vtx 26903 df-iedg 26904 df-edg 26953 df-uhgr 26963 df-subgr 27170 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |