MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniixp Structured version   Visualization version   GIF version

Theorem uniixp 8962
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
uniixp X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem uniixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpf 8961 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓:𝐴 𝑥𝐴 𝐵)
2 fssxp 6762 . . . . 5 (𝑓:𝐴 𝑥𝐴 𝐵𝑓 ⊆ (𝐴 × 𝑥𝐴 𝐵))
31, 2syl 17 . . . 4 (𝑓X𝑥𝐴 𝐵𝑓 ⊆ (𝐴 × 𝑥𝐴 𝐵))
4 velpw 4604 . . . 4 (𝑓 ∈ 𝒫 (𝐴 × 𝑥𝐴 𝐵) ↔ 𝑓 ⊆ (𝐴 × 𝑥𝐴 𝐵))
53, 4sylibr 234 . . 3 (𝑓X𝑥𝐴 𝐵𝑓 ∈ 𝒫 (𝐴 × 𝑥𝐴 𝐵))
65ssriv 3986 . 2 X𝑥𝐴 𝐵 ⊆ 𝒫 (𝐴 × 𝑥𝐴 𝐵)
7 sspwuni 5099 . 2 (X𝑥𝐴 𝐵 ⊆ 𝒫 (𝐴 × 𝑥𝐴 𝐵) ↔ X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵))
86, 7mpbi 230 1 X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wss 3950  𝒫 cpw 4599   cuni 4906   ciun 4990   × cxp 5682  wf 6556  Xcixp 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ixp 8939
This theorem is referenced by:  ixpexg  8963
  Copyright terms: Public domain W3C validator