MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniixp Structured version   Visualization version   GIF version

Theorem uniixp 8911
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
uniixp X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem uniixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpf 8910 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓:𝐴 𝑥𝐴 𝐵)
2 fssxp 6742 . . . . 5 (𝑓:𝐴 𝑥𝐴 𝐵𝑓 ⊆ (𝐴 × 𝑥𝐴 𝐵))
31, 2syl 17 . . . 4 (𝑓X𝑥𝐴 𝐵𝑓 ⊆ (𝐴 × 𝑥𝐴 𝐵))
4 velpw 4606 . . . 4 (𝑓 ∈ 𝒫 (𝐴 × 𝑥𝐴 𝐵) ↔ 𝑓 ⊆ (𝐴 × 𝑥𝐴 𝐵))
53, 4sylibr 233 . . 3 (𝑓X𝑥𝐴 𝐵𝑓 ∈ 𝒫 (𝐴 × 𝑥𝐴 𝐵))
65ssriv 3985 . 2 X𝑥𝐴 𝐵 ⊆ 𝒫 (𝐴 × 𝑥𝐴 𝐵)
7 sspwuni 5102 . 2 (X𝑥𝐴 𝐵 ⊆ 𝒫 (𝐴 × 𝑥𝐴 𝐵) ↔ X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵))
86, 7mpbi 229 1 X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wss 3947  𝒫 cpw 4601   cuni 4907   ciun 4996   × cxp 5673  wf 6536  Xcixp 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ixp 8888
This theorem is referenced by:  ixpexg  8912
  Copyright terms: Public domain W3C validator