![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniixp | Structured version Visualization version GIF version |
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
uniixp | ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpf 8910 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | fssxp 6742 | . . . . 5 ⊢ (𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵 → 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) |
4 | velpw 4606 | . . . 4 ⊢ (𝑓 ∈ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ↔ 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) |
6 | 5 | ssriv 3985 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
7 | sspwuni 5102 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 ⊆ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
8 | 6, 7 | mpbi 229 | 1 ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 ∪ ciun 4996 × cxp 5673 ⟶wf 6536 Xcixp 8887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ixp 8888 |
This theorem is referenced by: ixpexg 8912 |
Copyright terms: Public domain | W3C validator |