![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniixp | Structured version Visualization version GIF version |
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
uniixp | ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpf 8932 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | fssxp 6745 | . . . . 5 ⊢ (𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵 → 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) |
4 | velpw 4603 | . . . 4 ⊢ (𝑓 ∈ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ↔ 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) |
6 | 5 | ssriv 3982 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
7 | sspwuni 5097 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 ⊆ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
8 | 6, 7 | mpbi 229 | 1 ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ⊆ wss 3945 𝒫 cpw 4598 ∪ cuni 4903 ∪ ciun 4991 × cxp 5670 ⟶wf 6538 Xcixp 8909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ixp 8910 |
This theorem is referenced by: ixpexg 8934 |
Copyright terms: Public domain | W3C validator |