Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniixp | Structured version Visualization version GIF version |
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
uniixp | ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpf 8683 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | fssxp 6625 | . . . . 5 ⊢ (𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵 → 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) |
4 | velpw 4544 | . . . 4 ⊢ (𝑓 ∈ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ↔ 𝑓 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) |
6 | 5 | ssriv 3930 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
7 | sspwuni 5034 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 ⊆ 𝒫 (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ↔ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵)) | |
8 | 6, 7 | mpbi 229 | 1 ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4845 ∪ ciun 4930 × cxp 5587 ⟶wf 6427 Xcixp 8660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-fv 6439 df-ixp 8661 |
This theorem is referenced by: ixpexg 8685 |
Copyright terms: Public domain | W3C validator |