MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpl Structured version   Visualization version   GIF version

Theorem rankxpl 9564
Description: A lower bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion
Ref Expression
rankxpl ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴𝐵)) ⊆ (rank‘(𝐴 × 𝐵)))

Proof of Theorem rankxpl
StepHypRef Expression
1 unixp 6174 . . 3 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) = (𝐴𝐵))
21fveq2d 6760 . 2 ((𝐴 × 𝐵) ≠ ∅ → (rank‘ (𝐴 × 𝐵)) = (rank‘(𝐴𝐵)))
3 rankxpl.1 . . . . . 6 𝐴 ∈ V
4 rankxpl.2 . . . . . 6 𝐵 ∈ V
53, 4xpex 7581 . . . . 5 (𝐴 × 𝐵) ∈ V
65uniex 7572 . . . 4 (𝐴 × 𝐵) ∈ V
76rankuniss 9555 . . 3 (rank‘ (𝐴 × 𝐵)) ⊆ (rank‘ (𝐴 × 𝐵))
85rankuniss 9555 . . 3 (rank‘ (𝐴 × 𝐵)) ⊆ (rank‘(𝐴 × 𝐵))
97, 8sstri 3926 . 2 (rank‘ (𝐴 × 𝐵)) ⊆ (rank‘(𝐴 × 𝐵))
102, 9eqsstrrdi 3972 1 ((𝐴 × 𝐵) ≠ ∅ → (rank‘(𝐴𝐵)) ⊆ (rank‘(𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  Vcvv 3422  cun 3881  wss 3883  c0 4253   cuni 4836   × cxp 5578  cfv 6418  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  rankxplim  9568
  Copyright terms: Public domain W3C validator