MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle2 Structured version   Visualization version   GIF version

Theorem upgrle2 29123
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
upgrle2.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrle2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)

Proof of Theorem upgrle2
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph)
2 upgruhgr 29120 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
3 upgrle2.i . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 29084 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
52, 4syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐼)
65funfnd 6596 . . 3 (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼)
76adantr 480 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
8 simpr 484 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
9 eqid 2736 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 3upgrle 29108 . 2 ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
111, 7, 8, 10syl3anc 1372 1 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107   class class class wbr 5142  dom cdm 5684  Fun wfun 6554   Fn wfn 6555  cfv 6560  cle 11297  2c2 12322  chash 14370  Vtxcvtx 29014  iEdgciedg 29015  UHGraphcuhgr 29074  UPGraphcupgr 29098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-uhgr 29076  df-upgr 29100
This theorem is referenced by:  upgr2pthnlp  29753
  Copyright terms: Public domain W3C validator