![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrle2 | Structured version Visualization version GIF version |
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
upgrle2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrle2 | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph) | |
2 | upgruhgr 26407 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
3 | upgrle2.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | 3 | uhgrfun 26371 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐼) |
6 | funfn 6157 | . . . 4 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
7 | 5, 6 | sylib 210 | . . 3 ⊢ (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼) |
8 | 7 | adantr 474 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼) |
9 | simpr 479 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) | |
10 | eqid 2825 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
11 | 10, 3 | upgrle 26395 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
12 | 1, 8, 9, 11 | syl3anc 1494 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 class class class wbr 4875 dom cdm 5346 Fun wfun 6121 Fn wfn 6122 ‘cfv 6127 ≤ cle 10399 2c2 11413 ♯chash 13417 Vtxcvtx 26301 iEdgciedg 26302 UHGraphcuhgr 26361 UPGraphcupgr 26385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-uhgr 26363 df-upgr 26387 |
This theorem is referenced by: upgr2pthnlp 27041 |
Copyright terms: Public domain | W3C validator |