| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrle2 | Structured version Visualization version GIF version | ||
| Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.) |
| Ref | Expression |
|---|---|
| upgrle2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrle2 | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29029 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | upgrle2.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | 3 | uhgrfun 28993 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐼) |
| 6 | 5 | funfnd 6547 | . . 3 ⊢ (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼) |
| 8 | simpr 484 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) | |
| 9 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 10 | 9, 3 | upgrle 29017 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
| 11 | 1, 7, 8, 10 | syl3anc 1373 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 ≤ cle 11209 2c2 12241 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 UHGraphcuhgr 28983 UPGraphcupgr 29007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-uhgr 28985 df-upgr 29009 |
| This theorem is referenced by: upgr2pthnlp 29662 |
| Copyright terms: Public domain | W3C validator |