Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrle2 | Structured version Visualization version GIF version |
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
upgrle2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrle2 | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph) | |
2 | upgruhgr 27472 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
3 | upgrle2.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | 3 | uhgrfun 27436 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐼) |
6 | 5 | funfnd 6465 | . . 3 ⊢ (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼) |
7 | 6 | adantr 481 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼) |
8 | simpr 485 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) | |
9 | eqid 2738 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
10 | 9, 3 | upgrle 27460 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
11 | 1, 7, 8, 10 | syl3anc 1370 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 ≤ cle 11010 2c2 12028 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 UHGraphcuhgr 27426 UPGraphcupgr 27450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-uhgr 27428 df-upgr 27452 |
This theorem is referenced by: upgr2pthnlp 28100 |
Copyright terms: Public domain | W3C validator |