MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle2 Structured version   Visualization version   GIF version

Theorem upgrle2 29050
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
upgrle2.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrle2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)

Proof of Theorem upgrle2
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph)
2 upgruhgr 29047 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
3 upgrle2.i . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 29011 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
52, 4syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐼)
65funfnd 6513 . . 3 (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼)
76adantr 480 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
8 simpr 484 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
9 eqid 2729 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 3upgrle 29035 . 2 ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
111, 7, 8, 10syl3anc 1373 1 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  dom cdm 5619  Fun wfun 6476   Fn wfn 6477  cfv 6482  cle 11150  2c2 12183  chash 14237  Vtxcvtx 28941  iEdgciedg 28942  UHGraphcuhgr 29001  UPGraphcupgr 29025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-uhgr 29003  df-upgr 29027
This theorem is referenced by:  upgr2pthnlp  29677
  Copyright terms: Public domain W3C validator