MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle2 Structured version   Visualization version   GIF version

Theorem upgrle2 27475
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
upgrle2.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrle2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)

Proof of Theorem upgrle2
StepHypRef Expression
1 simpl 483 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph)
2 upgruhgr 27472 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
3 upgrle2.i . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 27436 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
52, 4syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐼)
65funfnd 6465 . . 3 (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼)
76adantr 481 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
8 simpr 485 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
9 eqid 2738 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 3upgrle 27460 . 2 ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
111, 7, 8, 10syl3anc 1370 1 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  dom cdm 5589  Fun wfun 6427   Fn wfn 6428  cfv 6433  cle 11010  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  UHGraphcuhgr 27426  UPGraphcupgr 27450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-uhgr 27428  df-upgr 27452
This theorem is referenced by:  upgr2pthnlp  28100
  Copyright terms: Public domain W3C validator