MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle2 Structured version   Visualization version   GIF version

Theorem upgrle2 27196
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
upgrle2.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrle2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)

Proof of Theorem upgrle2
StepHypRef Expression
1 simpl 486 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph)
2 upgruhgr 27193 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
3 upgrle2.i . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 27157 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
52, 4syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐼)
65funfnd 6411 . . 3 (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼)
76adantr 484 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
8 simpr 488 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
9 eqid 2737 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 3upgrle 27181 . 2 ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
111, 7, 8, 10syl3anc 1373 1 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  dom cdm 5551  Fun wfun 6374   Fn wfn 6375  cfv 6380  cle 10868  2c2 11885  chash 13896  Vtxcvtx 27087  iEdgciedg 27088  UHGraphcuhgr 27147  UPGraphcupgr 27171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-uhgr 27149  df-upgr 27173
This theorem is referenced by:  upgr2pthnlp  27819
  Copyright terms: Public domain W3C validator