Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrle2 | Structured version Visualization version GIF version |
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
upgrle2.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrle2 | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph) | |
2 | upgruhgr 27193 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
3 | upgrle2.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | 3 | uhgrfun 27157 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐼) |
6 | 5 | funfnd 6411 | . . 3 ⊢ (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼) |
7 | 6 | adantr 484 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼) |
8 | simpr 488 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) | |
9 | eqid 2737 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
10 | 9, 3 | upgrle 27181 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
11 | 1, 7, 8, 10 | syl3anc 1373 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) ≤ 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 dom cdm 5551 Fun wfun 6374 Fn wfn 6375 ‘cfv 6380 ≤ cle 10868 2c2 11885 ♯chash 13896 Vtxcvtx 27087 iEdgciedg 27088 UHGraphcuhgr 27147 UPGraphcupgr 27171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-uhgr 27149 df-upgr 27173 |
This theorem is referenced by: upgr2pthnlp 27819 |
Copyright terms: Public domain | W3C validator |