MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrfi Structured version   Visualization version   GIF version

Theorem upgrfi 26439
Description: An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrfi ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)

Proof of Theorem upgrfi
StepHypRef Expression
1 isupgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2upgrle 26438 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
4 2re 11449 . . . . . 6 2 ∈ ℝ
5 ltpnf 12265 . . . . . 6 (2 ∈ ℝ → 2 < +∞)
64, 5ax-mp 5 . . . . 5 2 < +∞
74rexri 10435 . . . . . 6 2 ∈ ℝ*
8 pnfxr 10430 . . . . . 6 +∞ ∈ ℝ*
9 xrltnle 10444 . . . . . 6 ((2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (2 < +∞ ↔ ¬ +∞ ≤ 2))
107, 8, 9mp2an 682 . . . . 5 (2 < +∞ ↔ ¬ +∞ ≤ 2)
116, 10mpbi 222 . . . 4 ¬ +∞ ≤ 2
12 fvex 6459 . . . . . 6 (𝐸𝐹) ∈ V
13 hashinf 13440 . . . . . 6 (((𝐸𝐹) ∈ V ∧ ¬ (𝐸𝐹) ∈ Fin) → (♯‘(𝐸𝐹)) = +∞)
1412, 13mpan 680 . . . . 5 (¬ (𝐸𝐹) ∈ Fin → (♯‘(𝐸𝐹)) = +∞)
1514breq1d 4896 . . . 4 (¬ (𝐸𝐹) ∈ Fin → ((♯‘(𝐸𝐹)) ≤ 2 ↔ +∞ ≤ 2))
1611, 15mtbiri 319 . . 3 (¬ (𝐸𝐹) ∈ Fin → ¬ (♯‘(𝐸𝐹)) ≤ 2)
1716con4i 114 . 2 ((♯‘(𝐸𝐹)) ≤ 2 → (𝐸𝐹) ∈ Fin)
183, 17syl 17 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398   class class class wbr 4886   Fn wfn 6130  cfv 6135  Fincfn 8241  cr 10271  +∞cpnf 10408  *cxr 10410   < clt 10411  cle 10412  2c2 11430  chash 13435  Vtxcvtx 26344  iEdgciedg 26345  UPGraphcupgr 26428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-hash 13436  df-upgr 26430
This theorem is referenced by:  upgrex  26440
  Copyright terms: Public domain W3C validator