![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrfi | Structured version Visualization version GIF version |
Description: An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrfi | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isupgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isupgr.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | upgrle 28350 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) |
4 | 2re 12286 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | ltpnf 13100 | . . . . . 6 ⊢ (2 ∈ ℝ → 2 < +∞) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 2 < +∞ |
7 | 4 | rexri 11272 | . . . . . 6 ⊢ 2 ∈ ℝ* |
8 | pnfxr 11268 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
9 | xrltnle 11281 | . . . . . 6 ⊢ ((2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (2 < +∞ ↔ ¬ +∞ ≤ 2)) | |
10 | 7, 8, 9 | mp2an 691 | . . . . 5 ⊢ (2 < +∞ ↔ ¬ +∞ ≤ 2) |
11 | 6, 10 | mpbi 229 | . . . 4 ⊢ ¬ +∞ ≤ 2 |
12 | fvex 6905 | . . . . . 6 ⊢ (𝐸‘𝐹) ∈ V | |
13 | hashinf 14295 | . . . . . 6 ⊢ (((𝐸‘𝐹) ∈ V ∧ ¬ (𝐸‘𝐹) ∈ Fin) → (♯‘(𝐸‘𝐹)) = +∞) | |
14 | 12, 13 | mpan 689 | . . . . 5 ⊢ (¬ (𝐸‘𝐹) ∈ Fin → (♯‘(𝐸‘𝐹)) = +∞) |
15 | 14 | breq1d 5159 | . . . 4 ⊢ (¬ (𝐸‘𝐹) ∈ Fin → ((♯‘(𝐸‘𝐹)) ≤ 2 ↔ +∞ ≤ 2)) |
16 | 11, 15 | mtbiri 327 | . . 3 ⊢ (¬ (𝐸‘𝐹) ∈ Fin → ¬ (♯‘(𝐸‘𝐹)) ≤ 2) |
17 | 16 | con4i 114 | . 2 ⊢ ((♯‘(𝐸‘𝐹)) ≤ 2 → (𝐸‘𝐹) ∈ Fin) |
18 | 3, 17 | syl 17 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 Fn wfn 6539 ‘cfv 6544 Fincfn 8939 ℝcr 11109 +∞cpnf 11245 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 2c2 12267 ♯chash 14290 Vtxcvtx 28256 iEdgciedg 28257 UPGraphcupgr 28340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-hash 14291 df-upgr 28342 |
This theorem is referenced by: upgrex 28352 |
Copyright terms: Public domain | W3C validator |