MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrfi Structured version   Visualization version   GIF version

Theorem upgrfi 27559
Description: An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrfi ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)

Proof of Theorem upgrfi
StepHypRef Expression
1 isupgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2upgrle 27558 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
4 2re 12107 . . . . . 6 2 ∈ ℝ
5 ltpnf 12916 . . . . . 6 (2 ∈ ℝ → 2 < +∞)
64, 5ax-mp 5 . . . . 5 2 < +∞
74rexri 11093 . . . . . 6 2 ∈ ℝ*
8 pnfxr 11089 . . . . . 6 +∞ ∈ ℝ*
9 xrltnle 11102 . . . . . 6 ((2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (2 < +∞ ↔ ¬ +∞ ≤ 2))
107, 8, 9mp2an 689 . . . . 5 (2 < +∞ ↔ ¬ +∞ ≤ 2)
116, 10mpbi 229 . . . 4 ¬ +∞ ≤ 2
12 fvex 6817 . . . . . 6 (𝐸𝐹) ∈ V
13 hashinf 14109 . . . . . 6 (((𝐸𝐹) ∈ V ∧ ¬ (𝐸𝐹) ∈ Fin) → (♯‘(𝐸𝐹)) = +∞)
1412, 13mpan 687 . . . . 5 (¬ (𝐸𝐹) ∈ Fin → (♯‘(𝐸𝐹)) = +∞)
1514breq1d 5090 . . . 4 (¬ (𝐸𝐹) ∈ Fin → ((♯‘(𝐸𝐹)) ≤ 2 ↔ +∞ ≤ 2))
1611, 15mtbiri 326 . . 3 (¬ (𝐸𝐹) ∈ Fin → ¬ (♯‘(𝐸𝐹)) ≤ 2)
1716con4i 114 . 2 ((♯‘(𝐸𝐹)) ≤ 2 → (𝐸𝐹) ∈ Fin)
183, 17syl 17 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1086   = wceq 1538  wcel 2103  Vcvv 3436   class class class wbr 5080   Fn wfn 6453  cfv 6458  Fincfn 8769  cr 10930  +∞cpnf 11066  *cxr 11068   < clt 11069  cle 11070  2c2 12088  chash 14104  Vtxcvtx 27464  iEdgciedg 27465  UPGraphcupgr 27548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-10 2134  ax-11 2151  ax-12 2168  ax-ext 2706  ax-sep 5231  ax-nul 5238  ax-pow 5296  ax-pr 5360  ax-un 7621  ax-cnex 10987  ax-resscn 10988  ax-1cn 10989  ax-icn 10990  ax-addcl 10991  ax-addrcl 10992  ax-mulcl 10993  ax-mulrcl 10994  ax-mulcom 10995  ax-addass 10996  ax-mulass 10997  ax-distr 10998  ax-i2m1 10999  ax-1ne0 11000  ax-1rid 11001  ax-rnegex 11002  ax-rrecex 11003  ax-cnre 11004  ax-pre-lttri 11005  ax-pre-lttrn 11006  ax-pre-ltadd 11007  ax-pre-mulgt0 11008
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2727  df-clel 2813  df-nfc 2885  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3340  df-rab 3357  df-v 3438  df-sbc 3721  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4844  df-int 4886  df-iun 4932  df-br 5081  df-opab 5143  df-mpt 5164  df-tr 5198  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7265  df-ov 7311  df-oprab 7312  df-mpo 7313  df-om 7749  df-2nd 7868  df-frecs 8132  df-wrecs 8163  df-recs 8237  df-rdg 8276  df-1o 8332  df-er 8534  df-en 8770  df-dom 8771  df-sdom 8772  df-fin 8773  df-card 9755  df-pnf 11071  df-mnf 11072  df-xr 11073  df-ltxr 11074  df-le 11075  df-sub 11267  df-neg 11268  df-nn 12034  df-2 12096  df-n0 12294  df-z 12380  df-uz 12643  df-hash 14105  df-upgr 27550
This theorem is referenced by:  upgrex  27560
  Copyright terms: Public domain W3C validator