MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgruhgr Structured version   Visualization version   GIF version

Theorem umgruhgr 27841
Description: An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.)
Assertion
Ref Expression
umgruhgr (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)

Proof of Theorem umgruhgr
StepHypRef Expression
1 umgrupgr 27840 . 2 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
2 upgruhgr 27839 . 2 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 1 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  UHGraphcuhgr 27793  UPGraphcupgr 27817  UMGraphcumgr 27818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-i2m1 11053  ax-1ne0 11054  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-ov 7353  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-2 12150  df-uhgr 27795  df-upgr 27819  df-umgr 27820
This theorem is referenced by:  umgredgprv  27844  umgr2edg  27943  subumgredg2  28019  subumgr  28022  umgrspan  28028  umgrreslem  28039  umgrres  28041  umgrres1lem  28044  vdumgr0  28214  vtxdumgr0nedg  28227  umgr2wlk  28680  umgrwwlks2on  28688  umgr3cyclex  28913  vdn0conngrumgrv2  28926  umgr2cycllem  33495
  Copyright terms: Public domain W3C validator