| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgruhgr | ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr 29102 | . 2 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29101 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 UHGraphcuhgr 29055 UPGraphcupgr 29079 UMGraphcumgr 29080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-i2m1 11085 ax-1ne0 11086 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-2 12199 df-uhgr 29057 df-upgr 29081 df-umgr 29082 |
| This theorem is referenced by: umgredgprv 29106 umgr2edg 29208 subumgredg2 29284 subumgr 29287 umgrspan 29293 umgrreslem 29304 umgrres 29306 umgrres1lem 29309 vdumgr0 29480 vtxdumgr0nedg 29493 umgr2wlk 29948 umgrwwlks2on 29958 umgr3cyclex 30184 vdn0conngrumgrv2 30197 umgr2cycllem 35256 isubgrumgr 48033 |
| Copyright terms: Public domain | W3C validator |