| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgruhgr | ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr 29028 | . 2 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29027 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 UHGraphcuhgr 28981 UPGraphcupgr 29005 UMGraphcumgr 29006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-i2m1 11195 ax-1ne0 11196 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-2 12301 df-uhgr 28983 df-upgr 29007 df-umgr 29008 |
| This theorem is referenced by: umgredgprv 29032 umgr2edg 29134 subumgredg2 29210 subumgr 29213 umgrspan 29219 umgrreslem 29230 umgrres 29232 umgrres1lem 29235 vdumgr0 29406 vtxdumgr0nedg 29419 umgr2wlk 29877 umgrwwlks2on 29885 umgr3cyclex 30110 vdn0conngrumgrv2 30123 umgr2cycllem 35108 isubgrumgr 47832 |
| Copyright terms: Public domain | W3C validator |