| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgruhgr | ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr 29076 | . 2 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29075 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 UHGraphcuhgr 29029 UPGraphcupgr 29053 UMGraphcumgr 29054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-i2m1 11069 ax-1ne0 11070 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-2 12183 df-uhgr 29031 df-upgr 29055 df-umgr 29056 |
| This theorem is referenced by: umgredgprv 29080 umgr2edg 29182 subumgredg2 29258 subumgr 29261 umgrspan 29267 umgrreslem 29278 umgrres 29280 umgrres1lem 29283 vdumgr0 29454 vtxdumgr0nedg 29467 umgr2wlk 29922 umgrwwlks2on 29930 umgr3cyclex 30155 vdn0conngrumgrv2 30168 umgr2cycllem 35176 isubgrumgr 47902 |
| Copyright terms: Public domain | W3C validator |