MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgruhgr Structured version   Visualization version   GIF version

Theorem umgruhgr 29139
Description: An undirected multigraph is an undirected hypergraph. (Contributed by AV, 26-Nov-2020.)
Assertion
Ref Expression
umgruhgr (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)

Proof of Theorem umgruhgr
StepHypRef Expression
1 umgrupgr 29138 . 2 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
2 upgruhgr 29137 . 2 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 1 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  UHGraphcuhgr 29091  UPGraphcupgr 29115  UMGraphcumgr 29116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-2 12356  df-uhgr 29093  df-upgr 29117  df-umgr 29118
This theorem is referenced by:  umgredgprv  29142  umgr2edg  29244  subumgredg2  29320  subumgr  29323  umgrspan  29329  umgrreslem  29340  umgrres  29342  umgrres1lem  29345  vdumgr0  29516  vtxdumgr0nedg  29529  umgr2wlk  29982  umgrwwlks2on  29990  umgr3cyclex  30215  vdn0conngrumgrv2  30228  umgr2cycllem  35108  isubgrumgr  47741
  Copyright terms: Public domain W3C validator