| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrunop | Structured version Visualization version GIF version | ||
| Description: The union of two pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| upgrun.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| upgrun.h | ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
| upgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| upgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| upgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| upgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
| 2 | upgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) | |
| 3 | upgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | upgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 5 | upgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | upgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 7 | upgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 8 | opex 5419 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
| 10 | 5 | fvexi 6854 | . . . 4 ⊢ 𝑉 ∈ V |
| 11 | 3 | fvexi 6854 | . . . . 5 ⊢ 𝐸 ∈ V |
| 12 | 4 | fvexi 6854 | . . . . 5 ⊢ 𝐹 ∈ V |
| 13 | 11, 12 | unex 7700 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
| 14 | 10, 13 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
| 15 | opvtxfv 28907 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
| 16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
| 17 | opiedgfv 28910 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
| 18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | upgrun 29021 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ∩ cin 3910 ∅c0 4292 〈cop 4591 dom cdm 5631 ‘cfv 6499 Vtxcvtx 28899 iEdgciedg 28900 UPGraphcupgr 28983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-1st 7947 df-2nd 7948 df-vtx 28901 df-iedg 28902 df-upgr 28985 |
| This theorem is referenced by: uspgrunop 29092 |
| Copyright terms: Public domain | W3C validator |