![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrunop | Structured version Visualization version GIF version |
Description: The union of two pseudographs (with the same vertex set): If ⟨𝑉, 𝐸⟩ and ⟨𝑉, 𝐹⟩ are pseudographs, then ⟨𝑉, 𝐸 ∪ 𝐹⟩ is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
upgrun.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
upgrun.h | ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
upgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
upgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
upgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
upgrunop | ⊢ (𝜑 → ⟨𝑉, (𝐸 ∪ 𝐹)⟩ ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
2 | upgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) | |
3 | upgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | upgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
5 | upgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | upgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
7 | upgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
8 | opex 5463 | . . 3 ⊢ ⟨𝑉, (𝐸 ∪ 𝐹)⟩ ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → ⟨𝑉, (𝐸 ∪ 𝐹)⟩ ∈ V) |
10 | 5 | fvexi 6904 | . . . 4 ⊢ 𝑉 ∈ V |
11 | 3 | fvexi 6904 | . . . . 5 ⊢ 𝐸 ∈ V |
12 | 4 | fvexi 6904 | . . . . 5 ⊢ 𝐹 ∈ V |
13 | 11, 12 | unex 7735 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
14 | 10, 13 | pm3.2i 469 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
15 | opvtxfv 28531 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸 ∪ 𝐹)⟩) = 𝑉) | |
16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘⟨𝑉, (𝐸 ∪ 𝐹)⟩) = 𝑉) |
17 | opiedgfv 28534 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸 ∪ 𝐹)⟩) = (𝐸 ∪ 𝐹)) | |
18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘⟨𝑉, (𝐸 ∪ 𝐹)⟩) = (𝐸 ∪ 𝐹)) |
19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | upgrun 28645 | 1 ⊢ (𝜑 → ⟨𝑉, (𝐸 ∪ 𝐹)⟩ ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 ⟨cop 4633 dom cdm 5675 ‘cfv 6542 Vtxcvtx 28523 iEdgciedg 28524 UPGraphcupgr 28607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-1st 7977 df-2nd 7978 df-vtx 28525 df-iedg 28526 df-upgr 28609 |
This theorem is referenced by: uspgrunop 28713 |
Copyright terms: Public domain | W3C validator |