Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrunop | Structured version Visualization version GIF version |
Description: The union of two pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
upgrun.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
upgrun.h | ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
upgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
upgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
upgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
upgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
2 | upgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) | |
3 | upgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | upgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
5 | upgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | upgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
7 | upgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
8 | opex 5324 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
10 | 5 | fvexi 6672 | . . . 4 ⊢ 𝑉 ∈ V |
11 | 3 | fvexi 6672 | . . . . 5 ⊢ 𝐸 ∈ V |
12 | 4 | fvexi 6672 | . . . . 5 ⊢ 𝐹 ∈ V |
13 | 11, 12 | unex 7467 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
14 | 10, 13 | pm3.2i 474 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
15 | opvtxfv 26896 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
17 | opiedgfv 26899 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | upgrun 27010 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∪ cun 3856 ∩ cin 3857 ∅c0 4225 〈cop 4528 dom cdm 5524 ‘cfv 6335 Vtxcvtx 26888 iEdgciedg 26889 UPGraphcupgr 26972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-1st 7693 df-2nd 7694 df-vtx 26890 df-iedg 26891 df-upgr 26974 |
This theorem is referenced by: uspgrunop 27078 |
Copyright terms: Public domain | W3C validator |