| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrunop | Structured version Visualization version GIF version | ||
| Description: The union of two pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| upgrun.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| upgrun.h | ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
| upgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| upgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| upgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| upgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
| 2 | upgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) | |
| 3 | upgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | upgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 5 | upgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | upgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 7 | upgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 8 | opex 5444 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
| 10 | 5 | fvexi 6895 | . . . 4 ⊢ 𝑉 ∈ V |
| 11 | 3 | fvexi 6895 | . . . . 5 ⊢ 𝐸 ∈ V |
| 12 | 4 | fvexi 6895 | . . . . 5 ⊢ 𝐹 ∈ V |
| 13 | 11, 12 | unex 7743 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
| 14 | 10, 13 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
| 15 | opvtxfv 28988 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
| 16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
| 17 | opiedgfv 28991 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
| 18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | upgrun 29102 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 〈cop 4612 dom cdm 5659 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 UPGraphcupgr 29064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1st 7993 df-2nd 7994 df-vtx 28982 df-iedg 28983 df-upgr 29066 |
| This theorem is referenced by: uspgrunop 29173 |
| Copyright terms: Public domain | W3C validator |