![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrunop | Structured version Visualization version GIF version |
Description: The union of two pseudographs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are pseudographs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
upgrun.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
upgrun.h | ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
upgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
upgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
upgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
upgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
2 | upgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UPGraph) | |
3 | upgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | upgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
5 | upgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | upgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
7 | upgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
8 | opex 5461 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
10 | 5 | fvexi 6906 | . . . 4 ⊢ 𝑉 ∈ V |
11 | 3 | fvexi 6906 | . . . . 5 ⊢ 𝐸 ∈ V |
12 | 4 | fvexi 6906 | . . . . 5 ⊢ 𝐹 ∈ V |
13 | 11, 12 | unex 7743 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
14 | 10, 13 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
15 | opvtxfv 28811 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
17 | opiedgfv 28814 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | upgrun 28925 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∪ cun 3943 ∩ cin 3944 ∅c0 4319 〈cop 4631 dom cdm 5673 ‘cfv 6543 Vtxcvtx 28803 iEdgciedg 28804 UPGraphcupgr 28887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1st 7988 df-2nd 7989 df-vtx 28805 df-iedg 28806 df-upgr 28889 |
This theorem is referenced by: uspgrunop 28996 |
Copyright terms: Public domain | W3C validator |