MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrunop Structured version   Visualization version   GIF version

Theorem upgrunop 29022
Description: The union of two pseudographs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are pseudographs, then 𝑉, 𝐸𝐹 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph)
upgrun.h (𝜑𝐻 ∈ UPGraph)
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
upgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)

Proof of Theorem upgrunop
StepHypRef Expression
1 upgrun.g . 2 (𝜑𝐺 ∈ UPGraph)
2 upgrun.h . 2 (𝜑𝐻 ∈ UPGraph)
3 upgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 upgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 upgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 upgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 upgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 opex 5419 . . 3 𝑉, (𝐸𝐹)⟩ ∈ V
98a1i 11 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
105fvexi 6854 . . . 4 𝑉 ∈ V
113fvexi 6854 . . . . 5 𝐸 ∈ V
124fvexi 6854 . . . . 5 𝐹 ∈ V
1311, 12unex 7700 . . . 4 (𝐸𝐹) ∈ V
1410, 13pm3.2i 470 . . 3 (𝑉 ∈ V ∧ (𝐸𝐹) ∈ V)
15 opvtxfv 28907 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
1614, 15mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
17 opiedgfv 28910 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
1814, 17mp1i 13 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
191, 2, 3, 4, 5, 6, 7, 9, 16, 18upgrun 29021 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  cin 3910  c0 4292  cop 4591  dom cdm 5631  cfv 6499  Vtxcvtx 28899  iEdgciedg 28900  UPGraphcupgr 28983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1st 7947  df-2nd 7948  df-vtx 28901  df-iedg 28902  df-upgr 28985
This theorem is referenced by:  uspgrunop  29092
  Copyright terms: Public domain W3C validator