MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1eopALT Structured version   Visualization version   GIF version

Theorem upgr1eopALT 29090
Description: Alternate proof of upgr1eop 29088, using the general theorem gropeld 29006 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 29088). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
upgr1eopALT (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)

Proof of Theorem upgr1eopALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (Vtx‘𝑔) = (Vtx‘𝑔)
2 simpllr 775 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐴𝑋)
3 simplrl 776 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐵𝑉)
4 eleq2 2820 . . . . . . 7 ((Vtx‘𝑔) = 𝑉 → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵𝑉))
54ad2antrl 728 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵𝑉))
63, 5mpbird 257 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐵 ∈ (Vtx‘𝑔))
7 simplrr 777 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐶𝑉)
8 eleq2 2820 . . . . . . 7 ((Vtx‘𝑔) = 𝑉 → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶𝑉))
98ad2antrl 728 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶𝑉))
107, 9mpbird 257 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐶 ∈ (Vtx‘𝑔))
11 simprr 772 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})
121, 2, 6, 10, 11upgr1e 29086 . . . 4 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝑔 ∈ UPGraph)
1312ex 412 . . 3 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩}) → 𝑔 ∈ UPGraph))
1413alrimiv 1928 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩}) → 𝑔 ∈ UPGraph))
15 simpll 766 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝑉𝑊)
16 snex 5369 . . 3 {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V
1716a1i 11 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V)
1814, 15, 17gropeld 29006 1 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  {cpr 4573  cop 4577  cfv 6476  Vtxcvtx 28969  iEdgciedg 28970  UPGraphcupgr 29053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-hash 14233  df-vtx 28971  df-iedg 28972  df-upgr 29055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator