![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr1eopALT | Structured version Visualization version GIF version |
Description: Alternate proof of upgr1eop 28902, using the general theorem gropeld 28820 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 28902). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
upgr1eopALT | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . . 5 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
2 | simpllr 775 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐴 ∈ 𝑋) | |
3 | simplrl 776 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐵 ∈ 𝑉) | |
4 | eleq2 2817 | . . . . . . 7 ⊢ ((Vtx‘𝑔) = 𝑉 → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵 ∈ 𝑉)) | |
5 | 4 | ad2antrl 727 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵 ∈ 𝑉)) |
6 | 3, 5 | mpbird 257 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐵 ∈ (Vtx‘𝑔)) |
7 | simplrr 777 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐶 ∈ 𝑉) | |
8 | eleq2 2817 | . . . . . . 7 ⊢ ((Vtx‘𝑔) = 𝑉 → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶 ∈ 𝑉)) | |
9 | 8 | ad2antrl 727 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶 ∈ 𝑉)) |
10 | 7, 9 | mpbird 257 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐶 ∈ (Vtx‘𝑔)) |
11 | simprr 772 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩}) | |
12 | 1, 2, 6, 10, 11 | upgr1e 28900 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝑔 ∈ UPGraph) |
13 | 12 | ex 412 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩}) → 𝑔 ∈ UPGraph)) |
14 | 13 | alrimiv 1923 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩}) → 𝑔 ∈ UPGraph)) |
15 | simpll 766 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑉 ∈ 𝑊) | |
16 | snex 5427 | . . 3 ⊢ {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V | |
17 | 16 | a1i 11 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V) |
18 | 14, 15, 17 | gropeld 28820 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 {csn 4624 {cpr 4626 ⟨cop 4630 ‘cfv 6542 Vtxcvtx 28783 iEdgciedg 28784 UPGraphcupgr 28867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-xnn0 12561 df-z 12575 df-uz 12839 df-fz 13503 df-hash 14308 df-vtx 28785 df-iedg 28786 df-upgr 28869 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |