Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr1eopALT | Structured version Visualization version GIF version |
Description: Alternate proof of upgr1eop 27530, using the general theorem gropeld 27448 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 27530). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
upgr1eopALT | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . 5 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
2 | simpllr 774 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐴 ∈ 𝑋) | |
3 | simplrl 775 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐵 ∈ 𝑉) | |
4 | eleq2 2825 | . . . . . . 7 ⊢ ((Vtx‘𝑔) = 𝑉 → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵 ∈ 𝑉)) | |
5 | 4 | ad2antrl 726 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵 ∈ 𝑉)) |
6 | 3, 5 | mpbird 257 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐵 ∈ (Vtx‘𝑔)) |
7 | simplrr 776 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐶 ∈ 𝑉) | |
8 | eleq2 2825 | . . . . . . 7 ⊢ ((Vtx‘𝑔) = 𝑉 → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶 ∈ 𝑉)) | |
9 | 8 | ad2antrl 726 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶 ∈ 𝑉)) |
10 | 7, 9 | mpbird 257 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐶 ∈ (Vtx‘𝑔)) |
11 | simprr 771 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉}) | |
12 | 1, 2, 6, 10, 11 | upgr1e 27528 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝑔 ∈ UPGraph) |
13 | 12 | ex 414 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉}) → 𝑔 ∈ UPGraph)) |
14 | 13 | alrimiv 1928 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉}) → 𝑔 ∈ UPGraph)) |
15 | simpll 765 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑉 ∈ 𝑊) | |
16 | snex 5363 | . . 3 ⊢ {〈𝐴, {𝐵, 𝐶}〉} ∈ V | |
17 | 16 | a1i 11 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
18 | 14, 15, 17 | gropeld 27448 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 {csn 4565 {cpr 4567 〈cop 4571 ‘cfv 6458 Vtxcvtx 27411 iEdgciedg 27412 UPGraphcupgr 27495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-fz 13286 df-hash 14091 df-vtx 27413 df-iedg 27414 df-upgr 27497 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |