MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1eopALT Structured version   Visualization version   GIF version

Theorem upgr1eopALT 29152
Description: Alternate proof of upgr1eop 29150, using the general theorem gropeld 29068 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 29150). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
upgr1eopALT (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)

Proof of Theorem upgr1eopALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (Vtx‘𝑔) = (Vtx‘𝑔)
2 simpllr 775 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐴𝑋)
3 simplrl 776 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐵𝑉)
4 eleq2 2833 . . . . . . 7 ((Vtx‘𝑔) = 𝑉 → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵𝑉))
54ad2antrl 727 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵𝑉))
63, 5mpbird 257 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐵 ∈ (Vtx‘𝑔))
7 simplrr 777 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐶𝑉)
8 eleq2 2833 . . . . . . 7 ((Vtx‘𝑔) = 𝑉 → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶𝑉))
98ad2antrl 727 . . . . . 6 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶𝑉))
107, 9mpbird 257 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝐶 ∈ (Vtx‘𝑔))
11 simprr 772 . . . . 5 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})
121, 2, 6, 10, 11upgr1e 29148 . . . 4 ((((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩})) → 𝑔 ∈ UPGraph)
1312ex 412 . . 3 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩}) → 𝑔 ∈ UPGraph))
1413alrimiv 1926 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {⟨𝐴, {𝐵, 𝐶}⟩}) → 𝑔 ∈ UPGraph))
15 simpll 766 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → 𝑉𝑊)
16 snex 5451 . . 3 {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V
1716a1i 11 . 2 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → {⟨𝐴, {𝐵, 𝐶}⟩} ∈ V)
1814, 15, 17gropeld 29068 1 (((𝑉𝑊𝐴𝑋) ∧ (𝐵𝑉𝐶𝑉)) → ⟨𝑉, {⟨𝐴, {𝐵, 𝐶}⟩}⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  {cpr 4650  cop 4654  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  UPGraphcupgr 29115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-vtx 29033  df-iedg 29034  df-upgr 29117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator