Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr1eopALT | Structured version Visualization version GIF version |
Description: Alternate proof of upgr1eop 27466, using the general theorem gropeld 27384 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop 27466). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
upgr1eopALT | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
2 | simpllr 772 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐴 ∈ 𝑋) | |
3 | simplrl 773 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐵 ∈ 𝑉) | |
4 | eleq2 2828 | . . . . . . 7 ⊢ ((Vtx‘𝑔) = 𝑉 → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵 ∈ 𝑉)) | |
5 | 4 | ad2antrl 724 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → (𝐵 ∈ (Vtx‘𝑔) ↔ 𝐵 ∈ 𝑉)) |
6 | 3, 5 | mpbird 256 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐵 ∈ (Vtx‘𝑔)) |
7 | simplrr 774 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐶 ∈ 𝑉) | |
8 | eleq2 2828 | . . . . . . 7 ⊢ ((Vtx‘𝑔) = 𝑉 → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶 ∈ 𝑉)) | |
9 | 8 | ad2antrl 724 | . . . . . 6 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → (𝐶 ∈ (Vtx‘𝑔) ↔ 𝐶 ∈ 𝑉)) |
10 | 7, 9 | mpbird 256 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝐶 ∈ (Vtx‘𝑔)) |
11 | simprr 769 | . . . . 5 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉}) | |
12 | 1, 2, 6, 10, 11 | upgr1e 27464 | . . . 4 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉})) → 𝑔 ∈ UPGraph) |
13 | 12 | ex 412 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉}) → 𝑔 ∈ UPGraph)) |
14 | 13 | alrimiv 1933 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = {〈𝐴, {𝐵, 𝐶}〉}) → 𝑔 ∈ UPGraph)) |
15 | simpll 763 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑉 ∈ 𝑊) | |
16 | snex 5357 | . . 3 ⊢ {〈𝐴, {𝐵, 𝐶}〉} ∈ V | |
17 | 16 | a1i 11 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → {〈𝐴, {𝐵, 𝐶}〉} ∈ V) |
18 | 14, 15, 17 | gropeld 27384 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 〈𝑉, {〈𝐴, {𝐵, 𝐶}〉}〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 {cpr 4568 〈cop 4572 ‘cfv 6430 Vtxcvtx 27347 iEdgciedg 27348 UPGraphcupgr 27431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 df-vtx 27349 df-iedg 27350 df-upgr 27433 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |