MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0eop Structured version   Visualization version   GIF version

Theorem usgr0eop 29011
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
Assertion
Ref Expression
usgr0eop (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph)

Proof of Theorem usgr0eop
StepHypRef Expression
1 opex 5457 . . 3 𝑉, ∅⟩ ∈ V
21a1i 11 . 2 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ V)
3 0ex 5300 . . 3 ∅ ∈ V
4 opiedgfv 28775 . . 3 ((𝑉𝑊 ∧ ∅ ∈ V) → (iEdg‘⟨𝑉, ∅⟩) = ∅)
53, 4mpan2 688 . 2 (𝑉𝑊 → (iEdg‘⟨𝑉, ∅⟩) = ∅)
62, 5usgr0e 29001 1 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3468  c0 4317  cop 4629  cfv 6537  iEdgciedg 28765  USGraphcusgr 28917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fv 6545  df-2nd 7975  df-iedg 28767  df-usgr 28919
This theorem is referenced by:  rgrusgrprc  29355
  Copyright terms: Public domain W3C validator