![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr0eop | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) |
Ref | Expression |
---|---|
usgr0eop | ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5464 | . . 3 ⊢ ⟨𝑉, ∅⟩ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ V) |
3 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
4 | opiedgfv 28264 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∅ ∈ V) → (iEdg‘⟨𝑉, ∅⟩) = ∅) | |
5 | 3, 4 | mpan2 689 | . 2 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘⟨𝑉, ∅⟩) = ∅) |
6 | 2, 5 | usgr0e 28490 | 1 ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 ⟨cop 4634 ‘cfv 6543 iEdgciedg 28254 USGraphcusgr 28406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fv 6551 df-2nd 7975 df-iedg 28256 df-usgr 28408 |
This theorem is referenced by: rgrusgrprc 28843 |
Copyright terms: Public domain | W3C validator |