![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr0eop | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) |
Ref | Expression |
---|---|
usgr0eop | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5061 | . . 3 ⊢ 〈𝑉, ∅〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ V) |
3 | 0ex 4925 | . . 3 ⊢ ∅ ∈ V | |
4 | opiedgfv 26108 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∅ ∈ V) → (iEdg‘〈𝑉, ∅〉) = ∅) | |
5 | 3, 4 | mpan2 671 | . 2 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘〈𝑉, ∅〉) = ∅) |
6 | 2, 5 | usgr0e 26351 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∅c0 4063 〈cop 4323 ‘cfv 6030 iEdgciedg 26096 USGraphcusgr 26266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fv 6038 df-2nd 7320 df-iedg 26098 df-usgr 26268 |
This theorem is referenced by: rgrusgrprc 26720 |
Copyright terms: Public domain | W3C validator |