MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0eop Structured version   Visualization version   GIF version

Theorem usgr0eop 28500
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
Assertion
Ref Expression
usgr0eop (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph)

Proof of Theorem usgr0eop
StepHypRef Expression
1 opex 5464 . . 3 𝑉, ∅⟩ ∈ V
21a1i 11 . 2 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ V)
3 0ex 5307 . . 3 ∅ ∈ V
4 opiedgfv 28264 . . 3 ((𝑉𝑊 ∧ ∅ ∈ V) → (iEdg‘⟨𝑉, ∅⟩) = ∅)
53, 4mpan2 689 . 2 (𝑉𝑊 → (iEdg‘⟨𝑉, ∅⟩) = ∅)
62, 5usgr0e 28490 1 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  cop 4634  cfv 6543  iEdgciedg 28254  USGraphcusgr 28406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fv 6551  df-2nd 7975  df-iedg 28256  df-usgr 28408
This theorem is referenced by:  rgrusgrprc  28843
  Copyright terms: Public domain W3C validator