Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzxr Structured version   Visualization version   GIF version

Theorem uzxr 40441
Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
uzxr (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℝ*)

Proof of Theorem uzxr
StepHypRef Expression
1 eqid 2799 . 2 (ℤ𝑀) = (ℤ𝑀)
2 id 22 . 2 (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ (ℤ𝑀))
31, 2uzxrd 40435 1 (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  cfv 6101  *cxr 10362  cuz 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-cnex 10280  ax-resscn 10281
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-xr 10367  df-neg 10559  df-z 11667  df-uz 11931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator