| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vcablo | Structured version Visualization version GIF version | ||
| Description: Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vcabl.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| Ref | Expression |
|---|---|
| vcablo | ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vcabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | eqid 2736 | . . 3 ⊢ (2nd ‘𝑊) = (2nd ‘𝑊) | |
| 3 | eqid 2736 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 4 | 1, 2, 3 | vciOLD 30547 | . 2 ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ (2nd ‘𝑊):(ℂ × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺((1(2nd ‘𝑊)𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝐺(𝑦(2nd ‘𝑊)(𝑥𝐺𝑧)) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑦(2nd ‘𝑊)𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)(2nd ‘𝑊)𝑥) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑧(2nd ‘𝑊)𝑥)) ∧ ((𝑦 · 𝑧)(2nd ‘𝑊)𝑥) = (𝑦(2nd ‘𝑊)(𝑧(2nd ‘𝑊)𝑥))))))) |
| 5 | 4 | simp1d 1142 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 × cxp 5657 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 ℂcc 11132 1c1 11135 + caddc 11137 · cmul 11139 AbelOpcablo 30530 CVecOLDcvc 30544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-1st 7993 df-2nd 7994 df-vc 30545 |
| This theorem is referenced by: vcgrp 30556 nvablo 30602 ip0i 30811 ipdirilem 30815 |
| Copyright terms: Public domain | W3C validator |