| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vcablo | Structured version Visualization version GIF version | ||
| Description: Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vcabl.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| Ref | Expression |
|---|---|
| vcablo | ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vcabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (2nd ‘𝑊) = (2nd ‘𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 4 | 1, 2, 3 | vciOLD 30533 | . 2 ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ (2nd ‘𝑊):(ℂ × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺((1(2nd ‘𝑊)𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝐺(𝑦(2nd ‘𝑊)(𝑥𝐺𝑧)) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑦(2nd ‘𝑊)𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)(2nd ‘𝑊)𝑥) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑧(2nd ‘𝑊)𝑥)) ∧ ((𝑦 · 𝑧)(2nd ‘𝑊)𝑥) = (𝑦(2nd ‘𝑊)(𝑧(2nd ‘𝑊)𝑥))))))) |
| 5 | 4 | simp1d 1142 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 × cxp 5609 ran crn 5612 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 ℂcc 10999 1c1 11002 + caddc 11004 · cmul 11006 AbelOpcablo 30516 CVecOLDcvc 30530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-1st 7916 df-2nd 7917 df-vc 30531 |
| This theorem is referenced by: vcgrp 30542 nvablo 30588 ip0i 30797 ipdirilem 30801 |
| Copyright terms: Public domain | W3C validator |