Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vcablo | Structured version Visualization version GIF version |
Description: Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcabl.1 | ⊢ 𝐺 = (1st ‘𝑊) |
Ref | Expression |
---|---|
vcablo | ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | eqid 2758 | . . 3 ⊢ (2nd ‘𝑊) = (2nd ‘𝑊) | |
3 | eqid 2758 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
4 | 1, 2, 3 | vciOLD 28456 | . 2 ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ (2nd ‘𝑊):(ℂ × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺((1(2nd ‘𝑊)𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝐺(𝑦(2nd ‘𝑊)(𝑥𝐺𝑧)) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑦(2nd ‘𝑊)𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)(2nd ‘𝑊)𝑥) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑧(2nd ‘𝑊)𝑥)) ∧ ((𝑦 · 𝑧)(2nd ‘𝑊)𝑥) = (𝑦(2nd ‘𝑊)(𝑧(2nd ‘𝑊)𝑥))))))) |
5 | 4 | simp1d 1139 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 × cxp 5526 ran crn 5529 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 1st c1st 7697 2nd c2nd 7698 ℂcc 10586 1c1 10589 + caddc 10591 · cmul 10593 AbelOpcablo 28439 CVecOLDcvc 28453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7159 df-1st 7699 df-2nd 7700 df-vc 28454 |
This theorem is referenced by: vcgrp 28465 nvablo 28511 ip0i 28720 ipdirilem 28724 |
Copyright terms: Public domain | W3C validator |