MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcablo Structured version   Visualization version   GIF version

Theorem vcablo 30589
Description: Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
vcabl.1 𝐺 = (1st𝑊)
Assertion
Ref Expression
vcablo (𝑊 ∈ CVecOLD𝐺 ∈ AbelOp)

Proof of Theorem vcablo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vcabl.1 . . 3 𝐺 = (1st𝑊)
2 eqid 2736 . . 3 (2nd𝑊) = (2nd𝑊)
3 eqid 2736 . . 3 ran 𝐺 = ran 𝐺
41, 2, 3vciOLD 30581 . 2 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ (2nd𝑊):(ℂ × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺((1(2nd𝑊)𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝐺(𝑦(2nd𝑊)(𝑥𝐺𝑧)) = ((𝑦(2nd𝑊)𝑥)𝐺(𝑦(2nd𝑊)𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)(2nd𝑊)𝑥) = ((𝑦(2nd𝑊)𝑥)𝐺(𝑧(2nd𝑊)𝑥)) ∧ ((𝑦 · 𝑧)(2nd𝑊)𝑥) = (𝑦(2nd𝑊)(𝑧(2nd𝑊)𝑥)))))))
54simp1d 1142 1 (𝑊 ∈ CVecOLD𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060   × cxp 5682  ran crn 5685  wf 6556  cfv 6560  (class class class)co 7432  1st c1st 8013  2nd c2nd 8014  cc 11154  1c1 11157   + caddc 11159   · cmul 11161  AbelOpcablo 30564  CVecOLDcvc 30578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-1st 8015  df-2nd 8016  df-vc 30579
This theorem is referenced by:  vcgrp  30590  nvablo  30636  ip0i  30845  ipdirilem  30849
  Copyright terms: Public domain W3C validator