![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcablo | Structured version Visualization version GIF version |
Description: Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcabl.1 | ⊢ 𝐺 = (1st ‘𝑊) |
Ref | Expression |
---|---|
vcablo | ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | eqid 2724 | . . 3 ⊢ (2nd ‘𝑊) = (2nd ‘𝑊) | |
3 | eqid 2724 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
4 | 1, 2, 3 | vciOLD 30249 | . 2 ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ (2nd ‘𝑊):(ℂ × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺((1(2nd ‘𝑊)𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝐺(𝑦(2nd ‘𝑊)(𝑥𝐺𝑧)) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑦(2nd ‘𝑊)𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)(2nd ‘𝑊)𝑥) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑧(2nd ‘𝑊)𝑥)) ∧ ((𝑦 · 𝑧)(2nd ‘𝑊)𝑥) = (𝑦(2nd ‘𝑊)(𝑧(2nd ‘𝑊)𝑥))))))) |
5 | 4 | simp1d 1139 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 × cxp 5664 ran crn 5667 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 1st c1st 7966 2nd c2nd 7967 ℂcc 11103 1c1 11106 + caddc 11108 · cmul 11110 AbelOpcablo 30232 CVecOLDcvc 30246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-1st 7968 df-2nd 7969 df-vc 30247 |
This theorem is referenced by: vcgrp 30258 nvablo 30304 ip0i 30513 ipdirilem 30517 |
Copyright terms: Public domain | W3C validator |