|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vcablo | Structured version Visualization version GIF version | ||
| Description: Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| vcabl.1 | ⊢ 𝐺 = (1st ‘𝑊) | 
| Ref | Expression | 
|---|---|
| vcablo | ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vcabl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | eqid 2736 | . . 3 ⊢ (2nd ‘𝑊) = (2nd ‘𝑊) | |
| 3 | eqid 2736 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 4 | 1, 2, 3 | vciOLD 30581 | . 2 ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ (2nd ‘𝑊):(ℂ × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺((1(2nd ‘𝑊)𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝐺(𝑦(2nd ‘𝑊)(𝑥𝐺𝑧)) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑦(2nd ‘𝑊)𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)(2nd ‘𝑊)𝑥) = ((𝑦(2nd ‘𝑊)𝑥)𝐺(𝑧(2nd ‘𝑊)𝑥)) ∧ ((𝑦 · 𝑧)(2nd ‘𝑊)𝑥) = (𝑦(2nd ‘𝑊)(𝑧(2nd ‘𝑊)𝑥))))))) | 
| 5 | 4 | simp1d 1142 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 × cxp 5682 ran crn 5685 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 2nd c2nd 8014 ℂcc 11154 1c1 11157 + caddc 11159 · cmul 11161 AbelOpcablo 30564 CVecOLDcvc 30578 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-1st 8015 df-2nd 8016 df-vc 30579 | 
| This theorem is referenced by: vcgrp 30590 nvablo 30636 ip0i 30845 ipdirilem 30849 | 
| Copyright terms: Public domain | W3C validator |