![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcablo | Structured version Visualization version GIF version |
Description: Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vcabl.1 | β’ πΊ = (1st βπ) |
Ref | Expression |
---|---|
vcablo | β’ (π β CVecOLD β πΊ β AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcabl.1 | . . 3 β’ πΊ = (1st βπ) | |
2 | eqid 2733 | . . 3 β’ (2nd βπ) = (2nd βπ) | |
3 | eqid 2733 | . . 3 β’ ran πΊ = ran πΊ | |
4 | 1, 2, 3 | vciOLD 29845 | . 2 β’ (π β CVecOLD β (πΊ β AbelOp β§ (2nd βπ):(β Γ ran πΊ)βΆran πΊ β§ βπ₯ β ran πΊ((1(2nd βπ)π₯) = π₯ β§ βπ¦ β β (βπ§ β ran πΊ(π¦(2nd βπ)(π₯πΊπ§)) = ((π¦(2nd βπ)π₯)πΊ(π¦(2nd βπ)π§)) β§ βπ§ β β (((π¦ + π§)(2nd βπ)π₯) = ((π¦(2nd βπ)π₯)πΊ(π§(2nd βπ)π₯)) β§ ((π¦ Β· π§)(2nd βπ)π₯) = (π¦(2nd βπ)(π§(2nd βπ)π₯))))))) |
5 | 4 | simp1d 1143 | 1 β’ (π β CVecOLD β πΊ β AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 Γ cxp 5675 ran crn 5678 βΆwf 6540 βcfv 6544 (class class class)co 7409 1st c1st 7973 2nd c2nd 7974 βcc 11108 1c1 11111 + caddc 11113 Β· cmul 11115 AbelOpcablo 29828 CVecOLDcvc 29842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-1st 7975 df-2nd 7976 df-vc 29843 |
This theorem is referenced by: vcgrp 29854 nvablo 29900 ip0i 30109 ipdirilem 30113 |
Copyright terms: Public domain | W3C validator |