MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcgrp Structured version   Visualization version   GIF version

Theorem vcgrp 30532
Description: Vector addition is a group operation. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
vcabl.1 𝐺 = (1st𝑊)
Assertion
Ref Expression
vcgrp (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)

Proof of Theorem vcgrp
StepHypRef Expression
1 vcabl.1 . . 3 𝐺 = (1st𝑊)
21vcablo 30531 . 2 (𝑊 ∈ CVecOLD𝐺 ∈ AbelOp)
3 ablogrpo 30509 . 2 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
42, 3syl 17 1 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  1st c1st 7929  GrpOpcgr 30451  AbelOpcablo 30506  CVecOLDcvc 30520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-1st 7931  df-2nd 7932  df-ablo 30507  df-vc 30521
This theorem is referenced by:  vclcan  30533  vczcl  30534  vc0rid  30535  vcm  30538
  Copyright terms: Public domain W3C validator