![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvablo | Structured version Visualization version GIF version |
Description: The vector addition operation of a normed complex vector space is an Abelian group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvabl.1 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvablo | ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 28059 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | nvabl.1 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 28047 | . . 3 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
5 | 4 | vcablo 28013 | . 2 ⊢ ((1st ‘𝑈) ∈ CVecOLD → 𝐺 ∈ AbelOp) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ‘cfv 6137 1st c1st 7445 AbelOpcablo 27988 CVecOLDcvc 28002 NrmCVeccnv 28028 +𝑣 cpv 28029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-1st 7447 df-2nd 7448 df-vc 28003 df-nv 28036 df-va 28039 df-ba 28040 df-sm 28041 df-0v 28042 df-nmcv 28044 |
This theorem is referenced by: nvgrp 28061 nvcom 28065 nvadd32 28067 nvadd4 28069 nvnnncan1 28091 nvaddsub 28099 |
Copyright terms: Public domain | W3C validator |