MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvablo Structured version   Visualization version   GIF version

Theorem nvablo 30595
Description: The vector addition operation of a normed complex vector space is an Abelian group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvabl.1 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvablo (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)

Proof of Theorem nvablo
StepHypRef Expression
1 eqid 2729 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30594 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvabl.1 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 30582 . . 3 𝐺 = (1st ‘(1st𝑈))
54vcablo 30548 . 2 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
62, 5syl 17 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  1st c1st 7945  AbelOpcablo 30523  CVecOLDcvc 30537  NrmCVeccnv 30563   +𝑣 cpv 30564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-1st 7947  df-2nd 7948  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-nmcv 30579
This theorem is referenced by:  nvgrp  30596  nvcom  30600  nvadd32  30602  nvadd4  30604  nvnnncan1  30626  nvaddsub  30634
  Copyright terms: Public domain W3C validator