MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvablo Structured version   Visualization version   GIF version

Theorem nvablo 30552
Description: The vector addition operation of a normed complex vector space is an Abelian group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvabl.1 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvablo (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)

Proof of Theorem nvablo
StepHypRef Expression
1 eqid 2730 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30551 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvabl.1 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 30539 . . 3 𝐺 = (1st ‘(1st𝑈))
54vcablo 30505 . 2 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
62, 5syl 17 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  1st c1st 7969  AbelOpcablo 30480  CVecOLDcvc 30494  NrmCVeccnv 30520   +𝑣 cpv 30521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-1st 7971  df-2nd 7972  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536
This theorem is referenced by:  nvgrp  30553  nvcom  30557  nvadd32  30559  nvadd4  30561  nvnnncan1  30583  nvaddsub  30591
  Copyright terms: Public domain W3C validator