| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonval | Structured version Visualization version GIF version | ||
| Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| vonval.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| Ref | Expression |
|---|---|
| vonval | ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-voln 46568 | . 2 ⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥)))) | |
| 2 | fveq2 6876 | . . 3 ⊢ (𝑥 = 𝑋 → (voln*‘𝑥) = (voln*‘𝑋)) | |
| 3 | 2fveq3 6881 | . . 3 ⊢ (𝑥 = 𝑋 → (CaraGen‘(voln*‘𝑥)) = (CaraGen‘(voln*‘𝑋))) | |
| 4 | 2, 3 | reseq12d 5967 | . 2 ⊢ (𝑥 = 𝑋 → ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| 5 | vonval.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 6 | fvex 6889 | . . . 4 ⊢ (voln*‘𝑋) ∈ V | |
| 7 | 6 | resex 6016 | . . 3 ⊢ ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 7009 | 1 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↾ cres 5656 ‘cfv 6531 Fincfn 8959 CaraGenccaragen 46520 voln*covoln 46565 volncvoln 46567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6484 df-fun 6533 df-fv 6539 df-voln 46568 |
| This theorem is referenced by: vonmea 46603 dmvon 46635 voncmpl 46650 mblvon 46668 |
| Copyright terms: Public domain | W3C validator |