Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonval Structured version   Visualization version   GIF version

Theorem vonval 44078
Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
vonval.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
vonval (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))

Proof of Theorem vonval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-voln 44077 . 2 voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))))
2 fveq2 6774 . . 3 (𝑥 = 𝑋 → (voln*‘𝑥) = (voln*‘𝑋))
3 2fveq3 6779 . . 3 (𝑥 = 𝑋 → (CaraGen‘(voln*‘𝑥)) = (CaraGen‘(voln*‘𝑋)))
42, 3reseq12d 5892 . 2 (𝑥 = 𝑋 → ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
5 vonval.1 . 2 (𝜑𝑋 ∈ Fin)
6 fvex 6787 . . . 4 (voln*‘𝑋) ∈ V
76resex 5939 . . 3 ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V
87a1i 11 . 2 (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V)
91, 4, 5, 8fvmptd3 6898 1 (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cres 5591  cfv 6433  Fincfn 8733  CaraGenccaragen 44029  voln*covoln 44074  volncvoln 44076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-voln 44077
This theorem is referenced by:  vonmea  44112  dmvon  44144  voncmpl  44159  mblvon  44177
  Copyright terms: Public domain W3C validator