![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonval | Structured version Visualization version GIF version |
Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
vonval.1 | β’ (π β π β Fin) |
Ref | Expression |
---|---|
vonval | β’ (π β (volnβπ) = ((voln*βπ) βΎ (CaraGenβ(voln*βπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-voln 45255 | . 2 β’ voln = (π₯ β Fin β¦ ((voln*βπ₯) βΎ (CaraGenβ(voln*βπ₯)))) | |
2 | fveq2 6892 | . . 3 β’ (π₯ = π β (voln*βπ₯) = (voln*βπ)) | |
3 | 2fveq3 6897 | . . 3 β’ (π₯ = π β (CaraGenβ(voln*βπ₯)) = (CaraGenβ(voln*βπ))) | |
4 | 2, 3 | reseq12d 5983 | . 2 β’ (π₯ = π β ((voln*βπ₯) βΎ (CaraGenβ(voln*βπ₯))) = ((voln*βπ) βΎ (CaraGenβ(voln*βπ)))) |
5 | vonval.1 | . 2 β’ (π β π β Fin) | |
6 | fvex 6905 | . . . 4 β’ (voln*βπ) β V | |
7 | 6 | resex 6030 | . . 3 β’ ((voln*βπ) βΎ (CaraGenβ(voln*βπ))) β V |
8 | 7 | a1i 11 | . 2 β’ (π β ((voln*βπ) βΎ (CaraGenβ(voln*βπ))) β V) |
9 | 1, 4, 5, 8 | fvmptd3 7022 | 1 β’ (π β (volnβπ) = ((voln*βπ) βΎ (CaraGenβ(voln*βπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 βΎ cres 5679 βcfv 6544 Fincfn 8939 CaraGenccaragen 45207 voln*covoln 45252 volncvoln 45254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6496 df-fun 6546 df-fv 6552 df-voln 45255 |
This theorem is referenced by: vonmea 45290 dmvon 45322 voncmpl 45337 mblvon 45355 |
Copyright terms: Public domain | W3C validator |