| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonval | Structured version Visualization version GIF version | ||
| Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| vonval.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| Ref | Expression |
|---|---|
| vonval | ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-voln 46521 | . 2 ⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥)))) | |
| 2 | fveq2 6826 | . . 3 ⊢ (𝑥 = 𝑋 → (voln*‘𝑥) = (voln*‘𝑋)) | |
| 3 | 2fveq3 6831 | . . 3 ⊢ (𝑥 = 𝑋 → (CaraGen‘(voln*‘𝑥)) = (CaraGen‘(voln*‘𝑋))) | |
| 4 | 2, 3 | reseq12d 5935 | . 2 ⊢ (𝑥 = 𝑋 → ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| 5 | vonval.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 6 | fvex 6839 | . . . 4 ⊢ (voln*‘𝑋) ∈ V | |
| 7 | 6 | resex 5984 | . . 3 ⊢ ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 6957 | 1 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↾ cres 5625 ‘cfv 6486 Fincfn 8879 CaraGenccaragen 46473 voln*covoln 46518 volncvoln 46520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-voln 46521 |
| This theorem is referenced by: vonmea 46556 dmvon 46588 voncmpl 46603 mblvon 46621 |
| Copyright terms: Public domain | W3C validator |