Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonval Structured version   Visualization version   GIF version

Theorem vonval 46665
Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
vonval.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
vonval (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))

Proof of Theorem vonval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-voln 46664 . 2 voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))))
2 fveq2 6830 . . 3 (𝑥 = 𝑋 → (voln*‘𝑥) = (voln*‘𝑋))
3 2fveq3 6835 . . 3 (𝑥 = 𝑋 → (CaraGen‘(voln*‘𝑥)) = (CaraGen‘(voln*‘𝑋)))
42, 3reseq12d 5935 . 2 (𝑥 = 𝑋 → ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
5 vonval.1 . 2 (𝜑𝑋 ∈ Fin)
6 fvex 6843 . . . 4 (voln*‘𝑋) ∈ V
76resex 5984 . . 3 ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V
87a1i 11 . 2 (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V)
91, 4, 5, 8fvmptd3 6960 1 (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cres 5623  cfv 6488  Fincfn 8877  CaraGenccaragen 46616  voln*covoln 46661  volncvoln 46663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6444  df-fun 6490  df-fv 6496  df-voln 46664
This theorem is referenced by:  vonmea  46699  dmvon  46731  voncmpl  46746  mblvon  46764
  Copyright terms: Public domain W3C validator