Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonval | Structured version Visualization version GIF version |
Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
vonval.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
vonval | ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-voln 43967 | . 2 ⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥)))) | |
2 | fveq2 6756 | . . 3 ⊢ (𝑥 = 𝑋 → (voln*‘𝑥) = (voln*‘𝑋)) | |
3 | 2fveq3 6761 | . . 3 ⊢ (𝑥 = 𝑋 → (CaraGen‘(voln*‘𝑥)) = (CaraGen‘(voln*‘𝑋))) | |
4 | 2, 3 | reseq12d 5881 | . 2 ⊢ (𝑥 = 𝑋 → ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
5 | vonval.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
6 | fvex 6769 | . . . 4 ⊢ (voln*‘𝑋) ∈ V | |
7 | 6 | resex 5928 | . . 3 ⊢ ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V) |
9 | 1, 4, 5, 8 | fvmptd3 6880 | 1 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↾ cres 5582 ‘cfv 6418 Fincfn 8691 CaraGenccaragen 43919 voln*covoln 43964 volncvoln 43966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-voln 43967 |
This theorem is referenced by: vonmea 44002 dmvon 44034 voncmpl 44049 mblvon 44067 |
Copyright terms: Public domain | W3C validator |