Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonval Structured version   Visualization version   GIF version

Theorem vonval 45256
Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
vonval.1 (πœ‘ β†’ 𝑋 ∈ Fin)
Assertion
Ref Expression
vonval (πœ‘ β†’ (volnβ€˜π‘‹) = ((voln*β€˜π‘‹) β†Ύ (CaraGenβ€˜(voln*β€˜π‘‹))))

Proof of Theorem vonval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 df-voln 45255 . 2 voln = (π‘₯ ∈ Fin ↦ ((voln*β€˜π‘₯) β†Ύ (CaraGenβ€˜(voln*β€˜π‘₯))))
2 fveq2 6892 . . 3 (π‘₯ = 𝑋 β†’ (voln*β€˜π‘₯) = (voln*β€˜π‘‹))
3 2fveq3 6897 . . 3 (π‘₯ = 𝑋 β†’ (CaraGenβ€˜(voln*β€˜π‘₯)) = (CaraGenβ€˜(voln*β€˜π‘‹)))
42, 3reseq12d 5983 . 2 (π‘₯ = 𝑋 β†’ ((voln*β€˜π‘₯) β†Ύ (CaraGenβ€˜(voln*β€˜π‘₯))) = ((voln*β€˜π‘‹) β†Ύ (CaraGenβ€˜(voln*β€˜π‘‹))))
5 vonval.1 . 2 (πœ‘ β†’ 𝑋 ∈ Fin)
6 fvex 6905 . . . 4 (voln*β€˜π‘‹) ∈ V
76resex 6030 . . 3 ((voln*β€˜π‘‹) β†Ύ (CaraGenβ€˜(voln*β€˜π‘‹))) ∈ V
87a1i 11 . 2 (πœ‘ β†’ ((voln*β€˜π‘‹) β†Ύ (CaraGenβ€˜(voln*β€˜π‘‹))) ∈ V)
91, 4, 5, 8fvmptd3 7022 1 (πœ‘ β†’ (volnβ€˜π‘‹) = ((voln*β€˜π‘‹) β†Ύ (CaraGenβ€˜(voln*β€˜π‘‹))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  Vcvv 3475   β†Ύ cres 5679  β€˜cfv 6544  Fincfn 8939  CaraGenccaragen 45207  voln*covoln 45252  volncvoln 45254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-voln 45255
This theorem is referenced by:  vonmea  45290  dmvon  45322  voncmpl  45337  mblvon  45355
  Copyright terms: Public domain W3C validator