| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > voncmpl | Structured version Visualization version GIF version | ||
| Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| voncmpl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| voncmpl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| voncmpl.e | ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) |
| voncmpl.z | ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) |
| voncmpl.f | ⊢ (𝜑 → 𝐹 ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| voncmpl | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voncmpl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | ovnome 46564 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
| 3 | eqid 2729 | . . 3 ⊢ ∪ dom (voln*‘𝑋) = ∪ dom (voln*‘𝑋) | |
| 4 | voncmpl.f | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ 𝐸) | |
| 5 | 1 | dmvon 46597 | . . . . . . 7 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
| 6 | eqid 2729 | . . . . . . . . 9 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
| 7 | 6 | caragenss 46495 | . . . . . . . 8 ⊢ ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
| 8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
| 9 | 5, 8 | eqsstrd 3970 | . . . . . 6 ⊢ (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋)) |
| 10 | voncmpl.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) | |
| 11 | 9, 10 | sseldd 3936 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ dom (voln*‘𝑋)) |
| 12 | elssuni 4888 | . . . . 5 ⊢ (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 14 | 4, 13 | sstrd 3946 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ ∪ dom (voln*‘𝑋)) |
| 15 | voncmpl.z | . . . . . . 7 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) | |
| 16 | 15 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → 0 = ((voln‘𝑋)‘𝐸)) |
| 17 | 1 | vonval 46531 | . . . . . . 7 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| 18 | 17 | fveq1d 6824 | . . . . . 6 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
| 19 | 16, 18 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
| 20 | voncmpl.s | . . . . . . . . 9 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = dom (voln‘𝑋)) |
| 22 | 21, 5 | eqtr2d 2765 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆) |
| 23 | 22 | reseq2d 5930 | . . . . . 6 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆)) |
| 24 | 23 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸)) |
| 25 | 10, 20 | eleqtrrdi 2839 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| 26 | fvres 6841 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) |
| 28 | 19, 24, 27 | 3eqtrrd 2769 | . . . 4 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐸) = 0) |
| 29 | 2, 3, 13, 28, 4 | omess0 46525 | . . 3 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐹) = 0) |
| 30 | 2, 3, 14, 29, 6 | caragencmpl 46526 | . 2 ⊢ (𝜑 → 𝐹 ∈ (CaraGen‘(voln*‘𝑋))) |
| 31 | 30, 22 | eleqtrd 2830 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∪ cuni 4858 dom cdm 5619 ↾ cres 5621 ‘cfv 6482 Fincfn 8872 0cc0 11009 OutMeascome 46480 CaraGenccaragen 46482 voln*covoln 46527 volncvoln 46529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cmp 23272 df-ovol 25363 df-vol 25364 df-sumge0 46354 df-ome 46481 df-caragen 46483 df-ovoln 46528 df-voln 46530 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |