Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > voncmpl | Structured version Visualization version GIF version |
Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
voncmpl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
voncmpl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
voncmpl.e | ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) |
voncmpl.z | ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) |
voncmpl.f | ⊢ (𝜑 → 𝐹 ⊆ 𝐸) |
Ref | Expression |
---|---|
voncmpl | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | voncmpl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | ovnome 44001 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
3 | eqid 2738 | . . 3 ⊢ ∪ dom (voln*‘𝑋) = ∪ dom (voln*‘𝑋) | |
4 | voncmpl.f | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ 𝐸) | |
5 | 1 | dmvon 44034 | . . . . . . 7 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
6 | eqid 2738 | . . . . . . . . 9 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
7 | 6 | caragenss 43932 | . . . . . . . 8 ⊢ ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
9 | 5, 8 | eqsstrd 3955 | . . . . . 6 ⊢ (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋)) |
10 | voncmpl.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) | |
11 | 9, 10 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ dom (voln*‘𝑋)) |
12 | elssuni 4868 | . . . . 5 ⊢ (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
14 | 4, 13 | sstrd 3927 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ ∪ dom (voln*‘𝑋)) |
15 | voncmpl.z | . . . . . . 7 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) | |
16 | 15 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → 0 = ((voln‘𝑋)‘𝐸)) |
17 | 1 | vonval 43968 | . . . . . . 7 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
18 | 17 | fveq1d 6758 | . . . . . 6 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
19 | 16, 18 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
20 | voncmpl.s | . . . . . . . . 9 ⊢ 𝑆 = dom (voln‘𝑋) | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = dom (voln‘𝑋)) |
22 | 21, 5 | eqtr2d 2779 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆) |
23 | 22 | reseq2d 5880 | . . . . . 6 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆)) |
24 | 23 | fveq1d 6758 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸)) |
25 | 10, 20 | eleqtrrdi 2850 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
26 | fvres 6775 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) |
28 | 19, 24, 27 | 3eqtrrd 2783 | . . . 4 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐸) = 0) |
29 | 2, 3, 13, 28, 4 | omess0 43962 | . . 3 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐹) = 0) |
30 | 2, 3, 14, 29, 6 | caragencmpl 43963 | . 2 ⊢ (𝜑 → 𝐹 ∈ (CaraGen‘(voln*‘𝑋))) |
31 | 30, 22 | eleqtrd 2841 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 Fincfn 8691 0cc0 10802 OutMeascome 43917 CaraGenccaragen 43919 voln*covoln 43964 volncvoln 43966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-prod 15544 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-0g 17069 df-topgen 17071 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-ovol 24533 df-vol 24534 df-sumge0 43791 df-ome 43918 df-caragen 43920 df-ovoln 43965 df-voln 43967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |