| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > voncmpl | Structured version Visualization version GIF version | ||
| Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| voncmpl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| voncmpl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| voncmpl.e | ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) |
| voncmpl.z | ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) |
| voncmpl.f | ⊢ (𝜑 → 𝐹 ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| voncmpl | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voncmpl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | ovnome 46602 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
| 3 | eqid 2735 | . . 3 ⊢ ∪ dom (voln*‘𝑋) = ∪ dom (voln*‘𝑋) | |
| 4 | voncmpl.f | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ 𝐸) | |
| 5 | 1 | dmvon 46635 | . . . . . . 7 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
| 6 | eqid 2735 | . . . . . . . . 9 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
| 7 | 6 | caragenss 46533 | . . . . . . . 8 ⊢ ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
| 8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
| 9 | 5, 8 | eqsstrd 3993 | . . . . . 6 ⊢ (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋)) |
| 10 | voncmpl.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) | |
| 11 | 9, 10 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ dom (voln*‘𝑋)) |
| 12 | elssuni 4913 | . . . . 5 ⊢ (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 14 | 4, 13 | sstrd 3969 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ ∪ dom (voln*‘𝑋)) |
| 15 | voncmpl.z | . . . . . . 7 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) | |
| 16 | 15 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → 0 = ((voln‘𝑋)‘𝐸)) |
| 17 | 1 | vonval 46569 | . . . . . . 7 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| 18 | 17 | fveq1d 6878 | . . . . . 6 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
| 19 | 16, 18 | eqtrd 2770 | . . . . 5 ⊢ (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
| 20 | voncmpl.s | . . . . . . . . 9 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = dom (voln‘𝑋)) |
| 22 | 21, 5 | eqtr2d 2771 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆) |
| 23 | 22 | reseq2d 5966 | . . . . . 6 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆)) |
| 24 | 23 | fveq1d 6878 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸)) |
| 25 | 10, 20 | eleqtrrdi 2845 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| 26 | fvres 6895 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) |
| 28 | 19, 24, 27 | 3eqtrrd 2775 | . . . 4 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐸) = 0) |
| 29 | 2, 3, 13, 28, 4 | omess0 46563 | . . 3 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐹) = 0) |
| 30 | 2, 3, 14, 29, 6 | caragencmpl 46564 | . 2 ⊢ (𝜑 → 𝐹 ∈ (CaraGen‘(voln*‘𝑋))) |
| 31 | 30, 22 | eleqtrd 2836 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 dom cdm 5654 ↾ cres 5656 ‘cfv 6531 Fincfn 8959 0cc0 11129 OutMeascome 46518 CaraGenccaragen 46520 voln*covoln 46565 volncvoln 46567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-prod 15920 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cmp 23325 df-ovol 25417 df-vol 25418 df-sumge0 46392 df-ome 46519 df-caragen 46521 df-ovoln 46566 df-voln 46568 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |