Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voncmpl Structured version   Visualization version   GIF version

Theorem voncmpl 41627
Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31 (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
voncmpl.x (𝜑𝑋 ∈ Fin)
voncmpl.s 𝑆 = dom (voln‘𝑋)
voncmpl.e (𝜑𝐸 ∈ dom (voln‘𝑋))
voncmpl.z (𝜑 → ((voln‘𝑋)‘𝐸) = 0)
voncmpl.f (𝜑𝐹𝐸)
Assertion
Ref Expression
voncmpl (𝜑𝐹𝑆)

Proof of Theorem voncmpl
StepHypRef Expression
1 voncmpl.x . . . 4 (𝜑𝑋 ∈ Fin)
21ovnome 41579 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
3 eqid 2825 . . 3 dom (voln*‘𝑋) = dom (voln*‘𝑋)
4 voncmpl.f . . . 4 (𝜑𝐹𝐸)
51dmvon 41612 . . . . . . 7 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
6 eqid 2825 . . . . . . . . 9 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
76caragenss 41510 . . . . . . . 8 ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋))
82, 7syl 17 . . . . . . 7 (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋))
95, 8eqsstrd 3864 . . . . . 6 (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋))
10 voncmpl.e . . . . . 6 (𝜑𝐸 ∈ dom (voln‘𝑋))
119, 10sseldd 3828 . . . . 5 (𝜑𝐸 ∈ dom (voln*‘𝑋))
12 elssuni 4691 . . . . 5 (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 dom (voln*‘𝑋))
1311, 12syl 17 . . . 4 (𝜑𝐸 dom (voln*‘𝑋))
144, 13sstrd 3837 . . 3 (𝜑𝐹 dom (voln*‘𝑋))
15 voncmpl.z . . . . . . 7 (𝜑 → ((voln‘𝑋)‘𝐸) = 0)
1615eqcomd 2831 . . . . . 6 (𝜑 → 0 = ((voln‘𝑋)‘𝐸))
171vonval 41546 . . . . . . 7 (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
1817fveq1d 6439 . . . . . 6 (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸))
1916, 18eqtrd 2861 . . . . 5 (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸))
20 voncmpl.s . . . . . . . . 9 𝑆 = dom (voln‘𝑋)
2120a1i 11 . . . . . . . 8 (𝜑𝑆 = dom (voln‘𝑋))
2221, 5eqtr2d 2862 . . . . . . 7 (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆)
2322reseq2d 5633 . . . . . 6 (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆))
2423fveq1d 6439 . . . . 5 (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸))
2510, 20syl6eleqr 2917 . . . . . 6 (𝜑𝐸𝑆)
26 fvres 6456 . . . . . 6 (𝐸𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸))
2725, 26syl 17 . . . . 5 (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸))
2819, 24, 273eqtrrd 2866 . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐸) = 0)
292, 3, 13, 28, 4omess0 41540 . . 3 (𝜑 → ((voln*‘𝑋)‘𝐹) = 0)
302, 3, 14, 29, 6caragencmpl 41541 . 2 (𝜑𝐹 ∈ (CaraGen‘(voln*‘𝑋)))
3130, 22eleqtrd 2908 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  wss 3798   cuni 4660  dom cdm 5346  cres 5348  cfv 6127  Fincfn 8228  0cc0 10259  OutMeascome 41495  CaraGenccaragen 41497  voln*covoln 41542  volncvoln 41544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cc 9579  ax-ac2 9607  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-disj 4844  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-acn 9088  df-ac 9259  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-rlim 14604  df-sum 14801  df-prod 15016  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-rest 16443  df-0g 16462  df-topgen 16464  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-subg 17949  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-drng 19112  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-cnfld 20114  df-top 21076  df-topon 21093  df-bases 21128  df-cmp 21568  df-ovol 23637  df-vol 23638  df-sumge0 41369  df-ome 41496  df-caragen 41498  df-ovoln 41543  df-voln 41545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator