Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voncmpl Structured version   Visualization version   GIF version

Theorem voncmpl 46577
Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
voncmpl.x (𝜑𝑋 ∈ Fin)
voncmpl.s 𝑆 = dom (voln‘𝑋)
voncmpl.e (𝜑𝐸 ∈ dom (voln‘𝑋))
voncmpl.z (𝜑 → ((voln‘𝑋)‘𝐸) = 0)
voncmpl.f (𝜑𝐹𝐸)
Assertion
Ref Expression
voncmpl (𝜑𝐹𝑆)

Proof of Theorem voncmpl
StepHypRef Expression
1 voncmpl.x . . . 4 (𝜑𝑋 ∈ Fin)
21ovnome 46529 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
3 eqid 2735 . . 3 dom (voln*‘𝑋) = dom (voln*‘𝑋)
4 voncmpl.f . . . 4 (𝜑𝐹𝐸)
51dmvon 46562 . . . . . . 7 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
6 eqid 2735 . . . . . . . . 9 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
76caragenss 46460 . . . . . . . 8 ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋))
82, 7syl 17 . . . . . . 7 (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋))
95, 8eqsstrd 4034 . . . . . 6 (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋))
10 voncmpl.e . . . . . 6 (𝜑𝐸 ∈ dom (voln‘𝑋))
119, 10sseldd 3996 . . . . 5 (𝜑𝐸 ∈ dom (voln*‘𝑋))
12 elssuni 4942 . . . . 5 (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 dom (voln*‘𝑋))
1311, 12syl 17 . . . 4 (𝜑𝐸 dom (voln*‘𝑋))
144, 13sstrd 4006 . . 3 (𝜑𝐹 dom (voln*‘𝑋))
15 voncmpl.z . . . . . . 7 (𝜑 → ((voln‘𝑋)‘𝐸) = 0)
1615eqcomd 2741 . . . . . 6 (𝜑 → 0 = ((voln‘𝑋)‘𝐸))
171vonval 46496 . . . . . . 7 (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
1817fveq1d 6909 . . . . . 6 (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸))
1916, 18eqtrd 2775 . . . . 5 (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸))
20 voncmpl.s . . . . . . . . 9 𝑆 = dom (voln‘𝑋)
2120a1i 11 . . . . . . . 8 (𝜑𝑆 = dom (voln‘𝑋))
2221, 5eqtr2d 2776 . . . . . . 7 (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆)
2322reseq2d 6000 . . . . . 6 (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆))
2423fveq1d 6909 . . . . 5 (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸))
2510, 20eleqtrrdi 2850 . . . . . 6 (𝜑𝐸𝑆)
26 fvres 6926 . . . . . 6 (𝐸𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸))
2725, 26syl 17 . . . . 5 (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸))
2819, 24, 273eqtrrd 2780 . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐸) = 0)
292, 3, 13, 28, 4omess0 46490 . . 3 (𝜑 → ((voln*‘𝑋)‘𝐹) = 0)
302, 3, 14, 29, 6caragencmpl 46491 . 2 (𝜑𝐹 ∈ (CaraGen‘(voln*‘𝑋)))
3130, 22eleqtrd 2841 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963   cuni 4912  dom cdm 5689  cres 5691  cfv 6563  Fincfn 8984  0cc0 11153  OutMeascome 46445  CaraGenccaragen 46447  voln*covoln 46492  volncvoln 46494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-sumge0 46319  df-ome 46446  df-caragen 46448  df-ovoln 46493  df-voln 46495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator