![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > voncmpl | Structured version Visualization version GIF version |
Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31 (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
voncmpl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
voncmpl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
voncmpl.e | ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) |
voncmpl.z | ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) |
voncmpl.f | ⊢ (𝜑 → 𝐹 ⊆ 𝐸) |
Ref | Expression |
---|---|
voncmpl | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | voncmpl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | ovnome 41579 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
3 | eqid 2825 | . . 3 ⊢ ∪ dom (voln*‘𝑋) = ∪ dom (voln*‘𝑋) | |
4 | voncmpl.f | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ 𝐸) | |
5 | 1 | dmvon 41612 | . . . . . . 7 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
6 | eqid 2825 | . . . . . . . . 9 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
7 | 6 | caragenss 41510 | . . . . . . . 8 ⊢ ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
9 | 5, 8 | eqsstrd 3864 | . . . . . 6 ⊢ (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋)) |
10 | voncmpl.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) | |
11 | 9, 10 | sseldd 3828 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ dom (voln*‘𝑋)) |
12 | elssuni 4691 | . . . . 5 ⊢ (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
14 | 4, 13 | sstrd 3837 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ ∪ dom (voln*‘𝑋)) |
15 | voncmpl.z | . . . . . . 7 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) | |
16 | 15 | eqcomd 2831 | . . . . . 6 ⊢ (𝜑 → 0 = ((voln‘𝑋)‘𝐸)) |
17 | 1 | vonval 41546 | . . . . . . 7 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
18 | 17 | fveq1d 6439 | . . . . . 6 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
19 | 16, 18 | eqtrd 2861 | . . . . 5 ⊢ (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
20 | voncmpl.s | . . . . . . . . 9 ⊢ 𝑆 = dom (voln‘𝑋) | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = dom (voln‘𝑋)) |
22 | 21, 5 | eqtr2d 2862 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆) |
23 | 22 | reseq2d 5633 | . . . . . 6 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆)) |
24 | 23 | fveq1d 6439 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸)) |
25 | 10, 20 | syl6eleqr 2917 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
26 | fvres 6456 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) |
28 | 19, 24, 27 | 3eqtrrd 2866 | . . . 4 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐸) = 0) |
29 | 2, 3, 13, 28, 4 | omess0 41540 | . . 3 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐹) = 0) |
30 | 2, 3, 14, 29, 6 | caragencmpl 41541 | . 2 ⊢ (𝜑 → 𝐹 ∈ (CaraGen‘(voln*‘𝑋))) |
31 | 30, 22 | eleqtrd 2908 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 ∪ cuni 4660 dom cdm 5346 ↾ cres 5348 ‘cfv 6127 Fincfn 8228 0cc0 10259 OutMeascome 41495 CaraGenccaragen 41497 voln*covoln 41542 volncvoln 41544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cc 9579 ax-ac2 9607 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-disj 4844 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-tpos 7622 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-acn 9088 df-ac 9259 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-rlim 14604 df-sum 14801 df-prod 15016 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-rest 16443 df-0g 16462 df-topgen 16464 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-subg 17949 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-cring 18911 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-invr 19033 df-dvr 19044 df-drng 19112 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-cnfld 20114 df-top 21076 df-topon 21093 df-bases 21128 df-cmp 21568 df-ovol 23637 df-vol 23638 df-sumge0 41369 df-ome 41496 df-caragen 41498 df-ovoln 41543 df-voln 41545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |