| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > voncmpl | Structured version Visualization version GIF version | ||
| Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| voncmpl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| voncmpl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| voncmpl.e | ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) |
| voncmpl.z | ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) |
| voncmpl.f | ⊢ (𝜑 → 𝐹 ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| voncmpl | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voncmpl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | ovnome 46670 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
| 3 | eqid 2731 | . . 3 ⊢ ∪ dom (voln*‘𝑋) = ∪ dom (voln*‘𝑋) | |
| 4 | voncmpl.f | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ 𝐸) | |
| 5 | 1 | dmvon 46703 | . . . . . . 7 ⊢ (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋))) |
| 6 | eqid 2731 | . . . . . . . . 9 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
| 7 | 6 | caragenss 46601 | . . . . . . . 8 ⊢ ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
| 8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋)) |
| 9 | 5, 8 | eqsstrd 3964 | . . . . . 6 ⊢ (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋)) |
| 10 | voncmpl.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ dom (voln‘𝑋)) | |
| 11 | 9, 10 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ dom (voln*‘𝑋)) |
| 12 | elssuni 4887 | . . . . 5 ⊢ (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ∪ dom (voln*‘𝑋)) |
| 14 | 4, 13 | sstrd 3940 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ ∪ dom (voln*‘𝑋)) |
| 15 | voncmpl.z | . . . . . . 7 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = 0) | |
| 16 | 15 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → 0 = ((voln‘𝑋)‘𝐸)) |
| 17 | 1 | vonval 46637 | . . . . . . 7 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
| 18 | 17 | fveq1d 6824 | . . . . . 6 ⊢ (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
| 19 | 16, 18 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸)) |
| 20 | voncmpl.s | . . . . . . . . 9 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = dom (voln‘𝑋)) |
| 22 | 21, 5 | eqtr2d 2767 | . . . . . . 7 ⊢ (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆) |
| 23 | 22 | reseq2d 5927 | . . . . . 6 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆)) |
| 24 | 23 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸)) |
| 25 | 10, 20 | eleqtrrdi 2842 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| 26 | fvres 6841 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸)) |
| 28 | 19, 24, 27 | 3eqtrrd 2771 | . . . 4 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐸) = 0) |
| 29 | 2, 3, 13, 28, 4 | omess0 46631 | . . 3 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐹) = 0) |
| 30 | 2, 3, 14, 29, 6 | caragencmpl 46632 | . 2 ⊢ (𝜑 → 𝐹 ∈ (CaraGen‘(voln*‘𝑋))) |
| 31 | 30, 22 | eleqtrd 2833 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4856 dom cdm 5614 ↾ cres 5616 ‘cfv 6481 Fincfn 8869 0cc0 11006 OutMeascome 46586 CaraGenccaragen 46588 voln*covoln 46633 volncvoln 46635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-rest 17326 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-bases 22861 df-cmp 23302 df-ovol 25392 df-vol 25393 df-sumge0 46460 df-ome 46587 df-caragen 46589 df-ovoln 46634 df-voln 46636 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |