Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mblvon Structured version   Visualization version   GIF version

Theorem mblvon 45228
Description: The n-dimensional Lebesgue measure of a measurable set is the same as its n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mblvon.1 (𝜑𝑋 ∈ Fin)
mblvon.2 (𝜑𝐴 ∈ dom (voln‘𝑋))
Assertion
Ref Expression
mblvon (𝜑 → ((voln‘𝑋)‘𝐴) = ((voln*‘𝑋)‘𝐴))

Proof of Theorem mblvon
StepHypRef Expression
1 mblvon.1 . . . 4 (𝜑𝑋 ∈ Fin)
21vonval 45129 . . 3 (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
32fveq1d 6883 . 2 (𝜑 → ((voln‘𝑋)‘𝐴) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐴))
4 mblvon.2 . . . 4 (𝜑𝐴 ∈ dom (voln‘𝑋))
51dmvon 45195 . . . 4 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
64, 5eleqtrd 2836 . . 3 (𝜑𝐴 ∈ (CaraGen‘(voln*‘𝑋)))
7 fvres 6900 . . 3 (𝐴 ∈ (CaraGen‘(voln*‘𝑋)) → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐴) = ((voln*‘𝑋)‘𝐴))
86, 7syl 17 . 2 (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐴) = ((voln*‘𝑋)‘𝐴))
93, 8eqtrd 2773 1 (𝜑 → ((voln‘𝑋)‘𝐴) = ((voln*‘𝑋)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  dom cdm 5672  cres 5674  cfv 6535  Fincfn 8927  CaraGenccaragen 45080  voln*covoln 45125  volncvoln 45127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cc 10417  ax-ac2 10445  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-disj 5110  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-er 8691  df-map 8810  df-pm 8811  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fi 9393  df-sup 9424  df-inf 9425  df-oi 9492  df-dju 9883  df-card 9921  df-acn 9924  df-ac 10098  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13315  df-ico 13317  df-icc 13318  df-fz 13472  df-fzo 13615  df-fl 13744  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-clim 15419  df-rlim 15420  df-sum 15620  df-prod 15837  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-rest 17355  df-0g 17374  df-topgen 17376  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-subg 18988  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-dvr 20193  df-drng 20295  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-cnfld 20919  df-top 22365  df-topon 22382  df-bases 22418  df-cmp 22860  df-ovol 24950  df-vol 24951  df-sumge0 44952  df-ome 45079  df-caragen 45081  df-ovoln 45126  df-voln 45128
This theorem is referenced by:  vonvol  45251  vonhoi  45256  von0val  45260
  Copyright terms: Public domain W3C validator