![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonmea | Structured version Visualization version GIF version |
Description: (voln‘𝑋) is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set 𝑋. Comments in Definition 115E of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
vonmea.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
vonmea | ⊢ (𝜑 → (voln‘𝑋) ∈ Meas) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonmea.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | vonval 41500 | . 2 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
3 | 1 | ovnome 41533 | . . 3 ⊢ (𝜑 → (voln*‘𝑋) ∈ OutMeas) |
4 | eqid 2799 | . . 3 ⊢ (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) | |
5 | 3, 4 | caratheodory 41488 | . 2 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ Meas) |
6 | 2, 5 | eqeltrd 2878 | 1 ⊢ (𝜑 → (voln‘𝑋) ∈ Meas) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ↾ cres 5314 ‘cfv 6101 Fincfn 8195 Meascmea 41409 CaraGenccaragen 41451 voln*covoln 41496 volncvoln 41498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cc 9545 ax-ac2 9573 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-disj 4812 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-ac 9225 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-rlim 14561 df-sum 14758 df-prod 14973 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-rest 16398 df-0g 16417 df-topgen 16419 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-minusg 17742 df-subg 17904 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-cring 18866 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-dvr 18999 df-drng 19067 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-cnfld 20069 df-top 21027 df-topon 21044 df-bases 21079 df-cmp 21519 df-ovol 23572 df-vol 23573 df-salg 41272 df-sumge0 41323 df-mea 41410 df-ome 41450 df-caragen 41452 df-ovoln 41497 df-voln 41499 |
This theorem is referenced by: dmovnsal 41572 hoimbllem 41590 voncl 41626 vonioolem2 41641 vonioo 41642 vonicclem2 41644 vonicc 41645 ctvonmbl 41649 vonct 41653 |
Copyright terms: Public domain | W3C validator |