Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonmea Structured version   Visualization version   GIF version

Theorem vonmea 41534
Description: (voln‘𝑋) is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set 𝑋. Comments in Definition 115E of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
vonmea.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
vonmea (𝜑 → (voln‘𝑋) ∈ Meas)

Proof of Theorem vonmea
StepHypRef Expression
1 vonmea.1 . . 3 (𝜑𝑋 ∈ Fin)
21vonval 41500 . 2 (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
31ovnome 41533 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
4 eqid 2799 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
53, 4caratheodory 41488 . 2 (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ Meas)
62, 5eqeltrd 2878 1 (𝜑 → (voln‘𝑋) ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  cres 5314  cfv 6101  Fincfn 8195  Meascmea 41409  CaraGenccaragen 41451  voln*covoln 41496  volncvoln 41498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cc 9545  ax-ac2 9573  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-disj 4812  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-omul 7804  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-acn 9054  df-ac 9225  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-rlim 14561  df-sum 14758  df-prod 14973  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-rest 16398  df-0g 16417  df-topgen 16419  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-subg 17904  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-cring 18866  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-drng 19067  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-cnfld 20069  df-top 21027  df-topon 21044  df-bases 21079  df-cmp 21519  df-ovol 23572  df-vol 23573  df-salg 41272  df-sumge0 41323  df-mea 41410  df-ome 41450  df-caragen 41452  df-ovoln 41497  df-voln 41499
This theorem is referenced by:  dmovnsal  41572  hoimbllem  41590  voncl  41626  vonioolem2  41641  vonioo  41642  vonicclem2  41644  vonicc  41645  ctvonmbl  41649  vonct  41653
  Copyright terms: Public domain W3C validator