MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snstrvtxval Structured version   Visualization version   GIF version

Theorem snstrvtxval 27407
Description: The set of vertices of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See vtxvalsnop 27411 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 23-Sep-2020.)
Hypotheses
Ref Expression
snstrvtxval.v 𝑉 ∈ V
snstrvtxval.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
Assertion
Ref Expression
snstrvtxval (𝑉 ≠ (Base‘ndx) → (Vtx‘𝐺) = 𝑉)

Proof of Theorem snstrvtxval
StepHypRef Expression
1 necom 2997 . . . 4 (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉)
2 fvex 6787 . . . . 5 (Base‘ndx) ∈ V
3 snstrvtxval.v . . . . 5 𝑉 ∈ V
4 snstrvtxval.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
52, 3, 4funsndifnop 7023 . . . 4 ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V))
61, 5sylbi 216 . . 3 (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V))
76iffalsed 4470 . 2 (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) = (Base‘𝐺))
8 vtxval 27370 . . 3 (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))
98a1i 11 . 2 (𝑉 ≠ (Base‘ndx) → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
1041strbas 16929 . . 3 (𝑉 ∈ V → 𝑉 = (Base‘𝐺))
113, 10mp1i 13 . 2 (𝑉 ≠ (Base‘ndx) → 𝑉 = (Base‘𝐺))
127, 9, 113eqtr4d 2788 1 (𝑉 ≠ (Base‘ndx) → (Vtx‘𝐺) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  ifcif 4459  {csn 4561  cop 4567   × cxp 5587  cfv 6433  1st c1st 7829  ndxcnx 16894  Basecbs 16912  Vtxcvtx 27366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-vtx 27368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator