Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxz0 Structured version   Visualization version   GIF version

Theorem zlmodzxz0 48239
Description: The 0 of the -module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxz.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
Assertion
Ref Expression
zlmodzxz0 0 = (0g𝑍)

Proof of Theorem zlmodzxz0
StepHypRef Expression
1 zlmodzxz.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
2 c0ex 11262 . . 3 0 ∈ V
3 1ex 11264 . . 3 1 ∈ V
4 xpprsng 7167 . . 3 ((0 ∈ V ∧ 1 ∈ V ∧ 0 ∈ V) → ({0, 1} × {0}) = {⟨0, 0⟩, ⟨1, 0⟩})
52, 3, 2, 4mp3an 1462 . 2 ({0, 1} × {0}) = {⟨0, 0⟩, ⟨1, 0⟩}
6 zringring 21487 . . 3 ring ∈ Ring
7 prex 5446 . . 3 {0, 1} ∈ V
8 zlmodzxz.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
9 zring0 21496 . . . 4 0 = (0g‘ℤring)
108, 9frlm0 21801 . . 3 ((ℤring ∈ Ring ∧ {0, 1} ∈ V) → ({0, 1} × {0}) = (0g𝑍))
116, 7, 10mp2an 692 . 2 ({0, 1} × {0}) = (0g𝑍)
121, 5, 113eqtr2i 2771 1 0 = (0g𝑍)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3481  {csn 4634  {cpr 4636  cop 4640   × cxp 5691  cfv 6569  (class class class)co 7438  0cc0 11162  1c1 11163  0gc0g 17495  Ringcrg 20260  ringczring 21484   freeLMod cfrlm 21793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-addf 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-0g 17497  df-prds 17503  df-pws 17505  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20596  df-lmod 20886  df-lss 20957  df-sra 21199  df-rgmod 21200  df-cnfld 21392  df-zring 21485  df-dsmm 21779  df-frlm 21794
This theorem is referenced by:  zlmodzxzldeplem3  48386
  Copyright terms: Public domain W3C validator