Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxz0 Structured version   Visualization version   GIF version

Theorem zlmodzxz0 43768
Description: The 0 of the -module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxz.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
Assertion
Ref Expression
zlmodzxz0 0 = (0g𝑍)

Proof of Theorem zlmodzxz0
StepHypRef Expression
1 zlmodzxz.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
2 c0ex 10427 . . 3 0 ∈ V
3 1ex 10429 . . 3 1 ∈ V
4 xpprsng 6719 . . 3 ((0 ∈ V ∧ 1 ∈ V ∧ 0 ∈ V) → ({0, 1} × {0}) = {⟨0, 0⟩, ⟨1, 0⟩})
52, 3, 2, 4mp3an 1440 . 2 ({0, 1} × {0}) = {⟨0, 0⟩, ⟨1, 0⟩}
6 zringring 20316 . . 3 ring ∈ Ring
7 prex 5183 . . 3 {0, 1} ∈ V
8 zlmodzxz.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
9 zring0 20323 . . . 4 0 = (0g‘ℤring)
108, 9frlm0 20594 . . 3 ((ℤring ∈ Ring ∧ {0, 1} ∈ V) → ({0, 1} × {0}) = (0g𝑍))
116, 7, 10mp2an 679 . 2 ({0, 1} × {0}) = (0g𝑍)
121, 5, 113eqtr2i 2802 1 0 = (0g𝑍)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  Vcvv 3409  {csn 4435  {cpr 4437  cop 4441   × cxp 5399  cfv 6182  (class class class)co 6970  0cc0 10329  1c1 10330  0gc0g 16563  Ringcrg 19014  ringzring 20313   freeLMod cfrlm 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-addf 10408  ax-mulf 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-map 8202  df-ixp 8254  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-fz 12703  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-starv 16430  df-sca 16431  df-vsca 16432  df-ip 16433  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-hom 16439  df-cco 16440  df-0g 16565  df-prds 16571  df-pws 16573  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-grp 17888  df-minusg 17889  df-sbg 17890  df-subg 18054  df-cmn 18662  df-mgp 18957  df-ur 18969  df-ring 19016  df-cring 19017  df-subrg 19250  df-lmod 19352  df-lss 19420  df-sra 19660  df-rgmod 19661  df-cnfld 20242  df-zring 20314  df-dsmm 20572  df-frlm 20587
This theorem is referenced by:  zlmodzxzldeplem3  43924
  Copyright terms: Public domain W3C validator