Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudisval0 | Structured version Visualization version GIF version |
Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
ehl2eudisval0.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudisval0.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
ehl2eudisval0.d | ⊢ 𝐷 = (dist‘𝐸) |
ehl2eudisval0.0 | ⊢ 0 = ({1, 2} × {0}) |
Ref | Expression |
---|---|
ehl2eudisval0 | ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5355 | . . . 4 ⊢ {1, 2} ∈ V | |
2 | ehl2eudisval0.0 | . . . . 5 ⊢ 0 = ({1, 2} × {0}) | |
3 | ehl2eudisval0.x | . . . . 5 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
4 | 2, 3 | rrx0el 24562 | . . . 4 ⊢ ({1, 2} ∈ V → 0 ∈ 𝑋) |
5 | 1, 4 | mp1i 13 | . . 3 ⊢ (𝐹 ∈ 𝑋 → 0 ∈ 𝑋) |
6 | ehl2eudisval0.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘2) | |
7 | ehl2eudisval0.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
8 | 6, 3, 7 | ehl2eudisval 24587 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)))) |
9 | 5, 8 | mpdan 684 | . 2 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)))) |
10 | 1ex 10971 | . . . . . . . . . . . 12 ⊢ 1 ∈ V | |
11 | 2ex 12050 | . . . . . . . . . . . 12 ⊢ 2 ∈ V | |
12 | c0ex 10969 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
13 | xpprsng 7012 | . . . . . . . . . . . 12 ⊢ ((1 ∈ V ∧ 2 ∈ V ∧ 0 ∈ V) → ({1, 2} × {0}) = {〈1, 0〉, 〈2, 0〉}) | |
14 | 10, 11, 12, 13 | mp3an 1460 | . . . . . . . . . . 11 ⊢ ({1, 2} × {0}) = {〈1, 0〉, 〈2, 0〉} |
15 | 2, 14 | eqtri 2766 | . . . . . . . . . 10 ⊢ 0 = {〈1, 0〉, 〈2, 0〉} |
16 | 15 | fveq1i 6775 | . . . . . . . . 9 ⊢ ( 0 ‘1) = ({〈1, 0〉, 〈2, 0〉}‘1) |
17 | 1ne2 12181 | . . . . . . . . . 10 ⊢ 1 ≠ 2 | |
18 | 10, 12 | fvpr1 7065 | . . . . . . . . . 10 ⊢ (1 ≠ 2 → ({〈1, 0〉, 〈2, 0〉}‘1) = 0) |
19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ ({〈1, 0〉, 〈2, 0〉}‘1) = 0 |
20 | 16, 19 | eqtri 2766 | . . . . . . . 8 ⊢ ( 0 ‘1) = 0 |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → ( 0 ‘1) = 0) |
22 | 21 | oveq2d 7291 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − ( 0 ‘1)) = ((𝐹‘1) − 0)) |
23 | eqid 2738 | . . . . . . . . 9 ⊢ {1, 2} = {1, 2} | |
24 | 23, 3 | rrx2pxel 46057 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℝ) |
25 | 24 | recnd 11003 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℂ) |
26 | 25 | subid1d 11321 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − 0) = (𝐹‘1)) |
27 | 22, 26 | eqtrd 2778 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − ( 0 ‘1)) = (𝐹‘1)) |
28 | 27 | oveq1d 7290 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘1) − ( 0 ‘1))↑2) = ((𝐹‘1)↑2)) |
29 | 15 | fveq1i 6775 | . . . . . . . 8 ⊢ ( 0 ‘2) = ({〈1, 0〉, 〈2, 0〉}‘2) |
30 | 11, 12 | fvpr2 7067 | . . . . . . . . 9 ⊢ (1 ≠ 2 → ({〈1, 0〉, 〈2, 0〉}‘2) = 0) |
31 | 17, 30 | mp1i 13 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → ({〈1, 0〉, 〈2, 0〉}‘2) = 0) |
32 | 29, 31 | eqtrid 2790 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → ( 0 ‘2) = 0) |
33 | 32 | oveq2d 7291 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − ( 0 ‘2)) = ((𝐹‘2) − 0)) |
34 | 23, 3 | rrx2pyel 46058 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℝ) |
35 | 34 | recnd 11003 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℂ) |
36 | 35 | subid1d 11321 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − 0) = (𝐹‘2)) |
37 | 33, 36 | eqtrd 2778 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − ( 0 ‘2)) = (𝐹‘2)) |
38 | 37 | oveq1d 7290 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘2) − ( 0 ‘2))↑2) = ((𝐹‘2)↑2)) |
39 | 28, 38 | oveq12d 7293 | . . 3 ⊢ (𝐹 ∈ 𝑋 → ((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
40 | 39 | fveq2d 6778 | . 2 ⊢ (𝐹 ∈ 𝑋 → (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
41 | 9, 40 | eqtrd 2778 | 1 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 {csn 4561 {cpr 4563 〈cop 4567 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 2c2 12028 ↑cexp 13782 √csqrt 14944 distcds 16971 𝔼hilcehl 24548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-field 19994 df-subrg 20022 df-staf 20105 df-srng 20106 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-cnfld 20598 df-refld 20810 df-dsmm 20939 df-frlm 20954 df-nm 23738 df-tng 23740 df-tcph 24333 df-rrx 24549 df-ehl 24550 |
This theorem is referenced by: ehl2eudis0lt 46072 itscnhlinecirc02plem3 46130 |
Copyright terms: Public domain | W3C validator |