Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ehl2eudisval0 Structured version   Visualization version   GIF version

Theorem ehl2eudisval0 45744
Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
ehl2eudisval0.e 𝐸 = (𝔼hil‘2)
ehl2eudisval0.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudisval0.d 𝐷 = (dist‘𝐸)
ehl2eudisval0.0 0 = ({1, 2} × {0})
Assertion
Ref Expression
ehl2eudisval0 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))

Proof of Theorem ehl2eudisval0
StepHypRef Expression
1 prex 5325 . . . 4 {1, 2} ∈ V
2 ehl2eudisval0.0 . . . . 5 0 = ({1, 2} × {0})
3 ehl2eudisval0.x . . . . 5 𝑋 = (ℝ ↑m {1, 2})
42, 3rrx0el 24295 . . . 4 ({1, 2} ∈ V → 0𝑋)
51, 4mp1i 13 . . 3 (𝐹𝑋0𝑋)
6 ehl2eudisval0.e . . . 4 𝐸 = (𝔼hil‘2)
7 ehl2eudisval0.d . . . 4 𝐷 = (dist‘𝐸)
86, 3, 7ehl2eudisval 24320 . . 3 ((𝐹𝑋0𝑋) → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))))
95, 8mpdan 687 . 2 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))))
10 1ex 10829 . . . . . . . . . . . 12 1 ∈ V
11 2ex 11907 . . . . . . . . . . . 12 2 ∈ V
12 c0ex 10827 . . . . . . . . . . . 12 0 ∈ V
13 xpprsng 6955 . . . . . . . . . . . 12 ((1 ∈ V ∧ 2 ∈ V ∧ 0 ∈ V) → ({1, 2} × {0}) = {⟨1, 0⟩, ⟨2, 0⟩})
1410, 11, 12, 13mp3an 1463 . . . . . . . . . . 11 ({1, 2} × {0}) = {⟨1, 0⟩, ⟨2, 0⟩}
152, 14eqtri 2765 . . . . . . . . . 10 0 = {⟨1, 0⟩, ⟨2, 0⟩}
1615fveq1i 6718 . . . . . . . . 9 ( 0 ‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1)
17 1ne2 12038 . . . . . . . . . 10 1 ≠ 2
1810, 12fvpr1 7005 . . . . . . . . . 10 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0)
1917, 18ax-mp 5 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0
2016, 19eqtri 2765 . . . . . . . 8 ( 0 ‘1) = 0
2120a1i 11 . . . . . . 7 (𝐹𝑋 → ( 0 ‘1) = 0)
2221oveq2d 7229 . . . . . 6 (𝐹𝑋 → ((𝐹‘1) − ( 0 ‘1)) = ((𝐹‘1) − 0))
23 eqid 2737 . . . . . . . . 9 {1, 2} = {1, 2}
2423, 3rrx2pxel 45730 . . . . . . . 8 (𝐹𝑋 → (𝐹‘1) ∈ ℝ)
2524recnd 10861 . . . . . . 7 (𝐹𝑋 → (𝐹‘1) ∈ ℂ)
2625subid1d 11178 . . . . . 6 (𝐹𝑋 → ((𝐹‘1) − 0) = (𝐹‘1))
2722, 26eqtrd 2777 . . . . 5 (𝐹𝑋 → ((𝐹‘1) − ( 0 ‘1)) = (𝐹‘1))
2827oveq1d 7228 . . . 4 (𝐹𝑋 → (((𝐹‘1) − ( 0 ‘1))↑2) = ((𝐹‘1)↑2))
2915fveq1i 6718 . . . . . . . 8 ( 0 ‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2)
3011, 12fvpr2 7006 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
3117, 30mp1i 13 . . . . . . . 8 (𝐹𝑋 → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
3229, 31syl5eq 2790 . . . . . . 7 (𝐹𝑋 → ( 0 ‘2) = 0)
3332oveq2d 7229 . . . . . 6 (𝐹𝑋 → ((𝐹‘2) − ( 0 ‘2)) = ((𝐹‘2) − 0))
3423, 3rrx2pyel 45731 . . . . . . . 8 (𝐹𝑋 → (𝐹‘2) ∈ ℝ)
3534recnd 10861 . . . . . . 7 (𝐹𝑋 → (𝐹‘2) ∈ ℂ)
3635subid1d 11178 . . . . . 6 (𝐹𝑋 → ((𝐹‘2) − 0) = (𝐹‘2))
3733, 36eqtrd 2777 . . . . 5 (𝐹𝑋 → ((𝐹‘2) − ( 0 ‘2)) = (𝐹‘2))
3837oveq1d 7228 . . . 4 (𝐹𝑋 → (((𝐹‘2) − ( 0 ‘2))↑2) = ((𝐹‘2)↑2))
3928, 38oveq12d 7231 . . 3 (𝐹𝑋 → ((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
4039fveq2d 6721 . 2 (𝐹𝑋 → (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
419, 40eqtrd 2777 1 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  {csn 4541  {cpr 4543  cop 4547   × cxp 5549  cfv 6380  (class class class)co 7213  m cmap 8508  cr 10728  0cc0 10729  1c1 10730   + caddc 10732  cmin 11062  2c2 11885  cexp 13635  csqrt 14796  distcds 16811  𝔼hilcehl 24281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-rnghom 19735  df-drng 19769  df-field 19770  df-subrg 19798  df-staf 19881  df-srng 19882  df-lmod 19901  df-lss 19969  df-sra 20209  df-rgmod 20210  df-cnfld 20364  df-refld 20567  df-dsmm 20694  df-frlm 20709  df-nm 23480  df-tng 23482  df-tcph 24066  df-rrx 24282  df-ehl 24283
This theorem is referenced by:  ehl2eudis0lt  45745  itscnhlinecirc02plem3  45803
  Copyright terms: Public domain W3C validator