![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudisval0 | Structured version Visualization version GIF version |
Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
ehl2eudisval0.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudisval0.x | ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) |
ehl2eudisval0.d | ⊢ 𝐷 = (dist‘𝐸) |
ehl2eudisval0.0 | ⊢ 0 = ({1, 2} × {0}) |
Ref | Expression |
---|---|
ehl2eudisval0 | ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5185 | . . . 4 ⊢ {1, 2} ∈ V | |
2 | ehl2eudisval0.0 | . . . . 5 ⊢ 0 = ({1, 2} × {0}) | |
3 | ehl2eudisval0.x | . . . . 5 ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) | |
4 | 2, 3 | rrx0el 23719 | . . . 4 ⊢ ({1, 2} ∈ V → 0 ∈ 𝑋) |
5 | 1, 4 | mp1i 13 | . . 3 ⊢ (𝐹 ∈ 𝑋 → 0 ∈ 𝑋) |
6 | ehl2eudisval0.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘2) | |
7 | ehl2eudisval0.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
8 | 6, 3, 7 | ehl2eudisval 23744 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)))) |
9 | 5, 8 | mpdan 675 | . 2 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)))) |
10 | 1ex 10433 | . . . . . . . . . . . 12 ⊢ 1 ∈ V | |
11 | 2ex 11515 | . . . . . . . . . . . 12 ⊢ 2 ∈ V | |
12 | c0ex 10431 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
13 | xpprsng 6723 | . . . . . . . . . . . 12 ⊢ ((1 ∈ V ∧ 2 ∈ V ∧ 0 ∈ V) → ({1, 2} × {0}) = {〈1, 0〉, 〈2, 0〉}) | |
14 | 10, 11, 12, 13 | mp3an 1441 | . . . . . . . . . . 11 ⊢ ({1, 2} × {0}) = {〈1, 0〉, 〈2, 0〉} |
15 | 2, 14 | eqtri 2795 | . . . . . . . . . 10 ⊢ 0 = {〈1, 0〉, 〈2, 0〉} |
16 | 15 | fveq1i 6497 | . . . . . . . . 9 ⊢ ( 0 ‘1) = ({〈1, 0〉, 〈2, 0〉}‘1) |
17 | 1ne2 11653 | . . . . . . . . . 10 ⊢ 1 ≠ 2 | |
18 | 10, 12 | fvpr1 6777 | . . . . . . . . . 10 ⊢ (1 ≠ 2 → ({〈1, 0〉, 〈2, 0〉}‘1) = 0) |
19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ ({〈1, 0〉, 〈2, 0〉}‘1) = 0 |
20 | 16, 19 | eqtri 2795 | . . . . . . . 8 ⊢ ( 0 ‘1) = 0 |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → ( 0 ‘1) = 0) |
22 | 21 | oveq2d 6990 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − ( 0 ‘1)) = ((𝐹‘1) − 0)) |
23 | eqid 2771 | . . . . . . . . 9 ⊢ {1, 2} = {1, 2} | |
24 | 23, 3 | rrx2pxel 44100 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℝ) |
25 | 24 | recnd 10466 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℂ) |
26 | 25 | subid1d 10785 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − 0) = (𝐹‘1)) |
27 | 22, 26 | eqtrd 2807 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − ( 0 ‘1)) = (𝐹‘1)) |
28 | 27 | oveq1d 6989 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘1) − ( 0 ‘1))↑2) = ((𝐹‘1)↑2)) |
29 | 15 | fveq1i 6497 | . . . . . . . 8 ⊢ ( 0 ‘2) = ({〈1, 0〉, 〈2, 0〉}‘2) |
30 | 11, 12 | fvpr2 6778 | . . . . . . . . 9 ⊢ (1 ≠ 2 → ({〈1, 0〉, 〈2, 0〉}‘2) = 0) |
31 | 17, 30 | mp1i 13 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → ({〈1, 0〉, 〈2, 0〉}‘2) = 0) |
32 | 29, 31 | syl5eq 2819 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → ( 0 ‘2) = 0) |
33 | 32 | oveq2d 6990 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − ( 0 ‘2)) = ((𝐹‘2) − 0)) |
34 | 23, 3 | rrx2pyel 44101 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℝ) |
35 | 34 | recnd 10466 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℂ) |
36 | 35 | subid1d 10785 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − 0) = (𝐹‘2)) |
37 | 33, 36 | eqtrd 2807 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − ( 0 ‘2)) = (𝐹‘2)) |
38 | 37 | oveq1d 6989 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘2) − ( 0 ‘2))↑2) = ((𝐹‘2)↑2)) |
39 | 28, 38 | oveq12d 6992 | . . 3 ⊢ (𝐹 ∈ 𝑋 → ((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
40 | 39 | fveq2d 6500 | . 2 ⊢ (𝐹 ∈ 𝑋 → (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
41 | 9, 40 | eqtrd 2807 | 1 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 Vcvv 3408 {csn 4435 {cpr 4437 〈cop 4441 × cxp 5401 ‘cfv 6185 (class class class)co 6974 ↑𝑚 cmap 8204 ℝcr 10332 0cc0 10333 1c1 10334 + caddc 10336 − cmin 10668 2c2 11493 ↑cexp 13242 √csqrt 14451 distcds 16428 𝔼hilcehl 23705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 ax-addf 10412 ax-mulf 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-om 7395 df-1st 7499 df-2nd 7500 df-supp 7632 df-tpos 7693 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-ixp 8258 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fsupp 8627 df-sup 8699 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-rp 12203 df-fz 12707 df-fzo 12848 df-seq 13183 df-exp 13243 df-hash 13504 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-clim 14704 df-sum 14902 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-starv 16434 df-sca 16435 df-vsca 16436 df-ip 16437 df-tset 16438 df-ple 16439 df-ds 16441 df-unif 16442 df-hom 16443 df-cco 16444 df-0g 16569 df-gsum 16570 df-prds 16575 df-pws 16577 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-grp 17906 df-minusg 17907 df-sbg 17908 df-subg 18072 df-ghm 18139 df-cntz 18230 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-cring 19035 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-rnghom 19202 df-drng 19239 df-field 19240 df-subrg 19268 df-staf 19350 df-srng 19351 df-lmod 19370 df-lss 19438 df-sra 19678 df-rgmod 19679 df-cnfld 20263 df-refld 20466 df-dsmm 20593 df-frlm 20608 df-nm 22910 df-tng 22912 df-tcph 23491 df-rrx 23706 df-ehl 23707 |
This theorem is referenced by: ehl2eudis0lt 44115 itscnhlinecirc02plem3 44173 |
Copyright terms: Public domain | W3C validator |