Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudisval0 | Structured version Visualization version GIF version |
Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
ehl2eudisval0.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudisval0.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
ehl2eudisval0.d | ⊢ 𝐷 = (dist‘𝐸) |
ehl2eudisval0.0 | ⊢ 0 = ({1, 2} × {0}) |
Ref | Expression |
---|---|
ehl2eudisval0 | ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5325 | . . . 4 ⊢ {1, 2} ∈ V | |
2 | ehl2eudisval0.0 | . . . . 5 ⊢ 0 = ({1, 2} × {0}) | |
3 | ehl2eudisval0.x | . . . . 5 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
4 | 2, 3 | rrx0el 24295 | . . . 4 ⊢ ({1, 2} ∈ V → 0 ∈ 𝑋) |
5 | 1, 4 | mp1i 13 | . . 3 ⊢ (𝐹 ∈ 𝑋 → 0 ∈ 𝑋) |
6 | ehl2eudisval0.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘2) | |
7 | ehl2eudisval0.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
8 | 6, 3, 7 | ehl2eudisval 24320 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)))) |
9 | 5, 8 | mpdan 687 | . 2 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)))) |
10 | 1ex 10829 | . . . . . . . . . . . 12 ⊢ 1 ∈ V | |
11 | 2ex 11907 | . . . . . . . . . . . 12 ⊢ 2 ∈ V | |
12 | c0ex 10827 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
13 | xpprsng 6955 | . . . . . . . . . . . 12 ⊢ ((1 ∈ V ∧ 2 ∈ V ∧ 0 ∈ V) → ({1, 2} × {0}) = {〈1, 0〉, 〈2, 0〉}) | |
14 | 10, 11, 12, 13 | mp3an 1463 | . . . . . . . . . . 11 ⊢ ({1, 2} × {0}) = {〈1, 0〉, 〈2, 0〉} |
15 | 2, 14 | eqtri 2765 | . . . . . . . . . 10 ⊢ 0 = {〈1, 0〉, 〈2, 0〉} |
16 | 15 | fveq1i 6718 | . . . . . . . . 9 ⊢ ( 0 ‘1) = ({〈1, 0〉, 〈2, 0〉}‘1) |
17 | 1ne2 12038 | . . . . . . . . . 10 ⊢ 1 ≠ 2 | |
18 | 10, 12 | fvpr1 7005 | . . . . . . . . . 10 ⊢ (1 ≠ 2 → ({〈1, 0〉, 〈2, 0〉}‘1) = 0) |
19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ ({〈1, 0〉, 〈2, 0〉}‘1) = 0 |
20 | 16, 19 | eqtri 2765 | . . . . . . . 8 ⊢ ( 0 ‘1) = 0 |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → ( 0 ‘1) = 0) |
22 | 21 | oveq2d 7229 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − ( 0 ‘1)) = ((𝐹‘1) − 0)) |
23 | eqid 2737 | . . . . . . . . 9 ⊢ {1, 2} = {1, 2} | |
24 | 23, 3 | rrx2pxel 45730 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℝ) |
25 | 24 | recnd 10861 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℂ) |
26 | 25 | subid1d 11178 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − 0) = (𝐹‘1)) |
27 | 22, 26 | eqtrd 2777 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘1) − ( 0 ‘1)) = (𝐹‘1)) |
28 | 27 | oveq1d 7228 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘1) − ( 0 ‘1))↑2) = ((𝐹‘1)↑2)) |
29 | 15 | fveq1i 6718 | . . . . . . . 8 ⊢ ( 0 ‘2) = ({〈1, 0〉, 〈2, 0〉}‘2) |
30 | 11, 12 | fvpr2 7006 | . . . . . . . . 9 ⊢ (1 ≠ 2 → ({〈1, 0〉, 〈2, 0〉}‘2) = 0) |
31 | 17, 30 | mp1i 13 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → ({〈1, 0〉, 〈2, 0〉}‘2) = 0) |
32 | 29, 31 | syl5eq 2790 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → ( 0 ‘2) = 0) |
33 | 32 | oveq2d 7229 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − ( 0 ‘2)) = ((𝐹‘2) − 0)) |
34 | 23, 3 | rrx2pyel 45731 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℝ) |
35 | 34 | recnd 10861 | . . . . . . 7 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℂ) |
36 | 35 | subid1d 11178 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − 0) = (𝐹‘2)) |
37 | 33, 36 | eqtrd 2777 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((𝐹‘2) − ( 0 ‘2)) = (𝐹‘2)) |
38 | 37 | oveq1d 7228 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘2) − ( 0 ‘2))↑2) = ((𝐹‘2)↑2)) |
39 | 28, 38 | oveq12d 7231 | . . 3 ⊢ (𝐹 ∈ 𝑋 → ((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
40 | 39 | fveq2d 6721 | . 2 ⊢ (𝐹 ∈ 𝑋 → (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
41 | 9, 40 | eqtrd 2777 | 1 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 Vcvv 3408 {csn 4541 {cpr 4543 〈cop 4547 × cxp 5549 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 − cmin 11062 2c2 11885 ↑cexp 13635 √csqrt 14796 distcds 16811 𝔼hilcehl 24281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-0g 16946 df-gsum 16947 df-prds 16952 df-pws 16954 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-ghm 18620 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 df-rnghom 19735 df-drng 19769 df-field 19770 df-subrg 19798 df-staf 19881 df-srng 19882 df-lmod 19901 df-lss 19969 df-sra 20209 df-rgmod 20210 df-cnfld 20364 df-refld 20567 df-dsmm 20694 df-frlm 20709 df-nm 23480 df-tng 23482 df-tcph 24066 df-rrx 24282 df-ehl 24283 |
This theorem is referenced by: ehl2eudis0lt 45745 itscnhlinecirc02plem3 45803 |
Copyright terms: Public domain | W3C validator |