![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudisval0 | Structured version Visualization version GIF version |
Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
ehl2eudisval0.e | β’ πΈ = (πΌhilβ2) |
ehl2eudisval0.x | β’ π = (β βm {1, 2}) |
ehl2eudisval0.d | β’ π· = (distβπΈ) |
ehl2eudisval0.0 | β’ 0 = ({1, 2} Γ {0}) |
Ref | Expression |
---|---|
ehl2eudisval0 | β’ (πΉ β π β (πΉπ· 0 ) = (ββ(((πΉβ1)β2) + ((πΉβ2)β2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5429 | . . . 4 β’ {1, 2} β V | |
2 | ehl2eudisval0.0 | . . . . 5 β’ 0 = ({1, 2} Γ {0}) | |
3 | ehl2eudisval0.x | . . . . 5 β’ π = (β βm {1, 2}) | |
4 | 2, 3 | rrx0el 25339 | . . . 4 β’ ({1, 2} β V β 0 β π) |
5 | 1, 4 | mp1i 13 | . . 3 β’ (πΉ β π β 0 β π) |
6 | ehl2eudisval0.e | . . . 4 β’ πΈ = (πΌhilβ2) | |
7 | ehl2eudisval0.d | . . . 4 β’ π· = (distβπΈ) | |
8 | 6, 3, 7 | ehl2eudisval 25364 | . . 3 β’ ((πΉ β π β§ 0 β π) β (πΉπ· 0 ) = (ββ((((πΉβ1) β ( 0 β1))β2) + (((πΉβ2) β ( 0 β2))β2)))) |
9 | 5, 8 | mpdan 685 | . 2 β’ (πΉ β π β (πΉπ· 0 ) = (ββ((((πΉβ1) β ( 0 β1))β2) + (((πΉβ2) β ( 0 β2))β2)))) |
10 | 1ex 11235 | . . . . . . . . . . . 12 β’ 1 β V | |
11 | 2ex 12314 | . . . . . . . . . . . 12 β’ 2 β V | |
12 | c0ex 11233 | . . . . . . . . . . . 12 β’ 0 β V | |
13 | xpprsng 7143 | . . . . . . . . . . . 12 β’ ((1 β V β§ 2 β V β§ 0 β V) β ({1, 2} Γ {0}) = {β¨1, 0β©, β¨2, 0β©}) | |
14 | 10, 11, 12, 13 | mp3an 1457 | . . . . . . . . . . 11 β’ ({1, 2} Γ {0}) = {β¨1, 0β©, β¨2, 0β©} |
15 | 2, 14 | eqtri 2753 | . . . . . . . . . 10 β’ 0 = {β¨1, 0β©, β¨2, 0β©} |
16 | 15 | fveq1i 6891 | . . . . . . . . 9 β’ ( 0 β1) = ({β¨1, 0β©, β¨2, 0β©}β1) |
17 | 1ne2 12445 | . . . . . . . . . 10 β’ 1 β 2 | |
18 | 10, 12 | fvpr1 7196 | . . . . . . . . . 10 β’ (1 β 2 β ({β¨1, 0β©, β¨2, 0β©}β1) = 0) |
19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 β’ ({β¨1, 0β©, β¨2, 0β©}β1) = 0 |
20 | 16, 19 | eqtri 2753 | . . . . . . . 8 β’ ( 0 β1) = 0 |
21 | 20 | a1i 11 | . . . . . . 7 β’ (πΉ β π β ( 0 β1) = 0) |
22 | 21 | oveq2d 7429 | . . . . . 6 β’ (πΉ β π β ((πΉβ1) β ( 0 β1)) = ((πΉβ1) β 0)) |
23 | eqid 2725 | . . . . . . . . 9 β’ {1, 2} = {1, 2} | |
24 | 23, 3 | rrx2pxel 47892 | . . . . . . . 8 β’ (πΉ β π β (πΉβ1) β β) |
25 | 24 | recnd 11267 | . . . . . . 7 β’ (πΉ β π β (πΉβ1) β β) |
26 | 25 | subid1d 11585 | . . . . . 6 β’ (πΉ β π β ((πΉβ1) β 0) = (πΉβ1)) |
27 | 22, 26 | eqtrd 2765 | . . . . 5 β’ (πΉ β π β ((πΉβ1) β ( 0 β1)) = (πΉβ1)) |
28 | 27 | oveq1d 7428 | . . . 4 β’ (πΉ β π β (((πΉβ1) β ( 0 β1))β2) = ((πΉβ1)β2)) |
29 | 15 | fveq1i 6891 | . . . . . . . 8 β’ ( 0 β2) = ({β¨1, 0β©, β¨2, 0β©}β2) |
30 | 11, 12 | fvpr2 7198 | . . . . . . . . 9 β’ (1 β 2 β ({β¨1, 0β©, β¨2, 0β©}β2) = 0) |
31 | 17, 30 | mp1i 13 | . . . . . . . 8 β’ (πΉ β π β ({β¨1, 0β©, β¨2, 0β©}β2) = 0) |
32 | 29, 31 | eqtrid 2777 | . . . . . . 7 β’ (πΉ β π β ( 0 β2) = 0) |
33 | 32 | oveq2d 7429 | . . . . . 6 β’ (πΉ β π β ((πΉβ2) β ( 0 β2)) = ((πΉβ2) β 0)) |
34 | 23, 3 | rrx2pyel 47893 | . . . . . . . 8 β’ (πΉ β π β (πΉβ2) β β) |
35 | 34 | recnd 11267 | . . . . . . 7 β’ (πΉ β π β (πΉβ2) β β) |
36 | 35 | subid1d 11585 | . . . . . 6 β’ (πΉ β π β ((πΉβ2) β 0) = (πΉβ2)) |
37 | 33, 36 | eqtrd 2765 | . . . . 5 β’ (πΉ β π β ((πΉβ2) β ( 0 β2)) = (πΉβ2)) |
38 | 37 | oveq1d 7428 | . . . 4 β’ (πΉ β π β (((πΉβ2) β ( 0 β2))β2) = ((πΉβ2)β2)) |
39 | 28, 38 | oveq12d 7431 | . . 3 β’ (πΉ β π β ((((πΉβ1) β ( 0 β1))β2) + (((πΉβ2) β ( 0 β2))β2)) = (((πΉβ1)β2) + ((πΉβ2)β2))) |
40 | 39 | fveq2d 6894 | . 2 β’ (πΉ β π β (ββ((((πΉβ1) β ( 0 β1))β2) + (((πΉβ2) β ( 0 β2))β2))) = (ββ(((πΉβ1)β2) + ((πΉβ2)β2)))) |
41 | 9, 40 | eqtrd 2765 | 1 β’ (πΉ β π β (πΉπ· 0 ) = (ββ(((πΉβ1)β2) + ((πΉβ2)β2)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 {csn 4625 {cpr 4627 β¨cop 4631 Γ cxp 5671 βcfv 6543 (class class class)co 7413 βm cmap 8838 βcr 11132 0cc0 11133 1c1 11134 + caddc 11136 β cmin 11469 2c2 12292 βcexp 14053 βcsqrt 15207 distcds 17236 πΌhilcehl 25325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 ax-mulf 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-sup 9460 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-rp 13002 df-fz 13512 df-fzo 13655 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-sum 15660 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17417 df-gsum 17418 df-prds 17423 df-pws 17425 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-ghm 19167 df-cntz 19267 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-rhm 20410 df-subrng 20482 df-subrg 20507 df-drng 20625 df-field 20626 df-staf 20724 df-srng 20725 df-lmod 20744 df-lss 20815 df-sra 21057 df-rgmod 21058 df-cnfld 21279 df-refld 21536 df-dsmm 21665 df-frlm 21680 df-nm 24504 df-tng 24506 df-tcph 25110 df-rrx 25326 df-ehl 25327 |
This theorem is referenced by: ehl2eudis0lt 47907 itscnhlinecirc02plem3 47965 |
Copyright terms: Public domain | W3C validator |