Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ehl2eudisval0 Structured version   Visualization version   GIF version

Theorem ehl2eudisval0 48705
Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
ehl2eudisval0.e 𝐸 = (𝔼hil‘2)
ehl2eudisval0.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudisval0.d 𝐷 = (dist‘𝐸)
ehl2eudisval0.0 0 = ({1, 2} × {0})
Assertion
Ref Expression
ehl2eudisval0 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))

Proof of Theorem ehl2eudisval0
StepHypRef Expression
1 prex 5407 . . . 4 {1, 2} ∈ V
2 ehl2eudisval0.0 . . . . 5 0 = ({1, 2} × {0})
3 ehl2eudisval0.x . . . . 5 𝑋 = (ℝ ↑m {1, 2})
42, 3rrx0el 25350 . . . 4 ({1, 2} ∈ V → 0𝑋)
51, 4mp1i 13 . . 3 (𝐹𝑋0𝑋)
6 ehl2eudisval0.e . . . 4 𝐸 = (𝔼hil‘2)
7 ehl2eudisval0.d . . . 4 𝐷 = (dist‘𝐸)
86, 3, 7ehl2eudisval 25375 . . 3 ((𝐹𝑋0𝑋) → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))))
95, 8mpdan 687 . 2 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))))
10 1ex 11231 . . . . . . . . . . . 12 1 ∈ V
11 2ex 12317 . . . . . . . . . . . 12 2 ∈ V
12 c0ex 11229 . . . . . . . . . . . 12 0 ∈ V
13 xpprsng 7130 . . . . . . . . . . . 12 ((1 ∈ V ∧ 2 ∈ V ∧ 0 ∈ V) → ({1, 2} × {0}) = {⟨1, 0⟩, ⟨2, 0⟩})
1410, 11, 12, 13mp3an 1463 . . . . . . . . . . 11 ({1, 2} × {0}) = {⟨1, 0⟩, ⟨2, 0⟩}
152, 14eqtri 2758 . . . . . . . . . 10 0 = {⟨1, 0⟩, ⟨2, 0⟩}
1615fveq1i 6877 . . . . . . . . 9 ( 0 ‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1)
17 1ne2 12448 . . . . . . . . . 10 1 ≠ 2
1810, 12fvpr1 7184 . . . . . . . . . 10 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0)
1917, 18ax-mp 5 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0
2016, 19eqtri 2758 . . . . . . . 8 ( 0 ‘1) = 0
2120a1i 11 . . . . . . 7 (𝐹𝑋 → ( 0 ‘1) = 0)
2221oveq2d 7421 . . . . . 6 (𝐹𝑋 → ((𝐹‘1) − ( 0 ‘1)) = ((𝐹‘1) − 0))
23 eqid 2735 . . . . . . . . 9 {1, 2} = {1, 2}
2423, 3rrx2pxel 48691 . . . . . . . 8 (𝐹𝑋 → (𝐹‘1) ∈ ℝ)
2524recnd 11263 . . . . . . 7 (𝐹𝑋 → (𝐹‘1) ∈ ℂ)
2625subid1d 11583 . . . . . 6 (𝐹𝑋 → ((𝐹‘1) − 0) = (𝐹‘1))
2722, 26eqtrd 2770 . . . . 5 (𝐹𝑋 → ((𝐹‘1) − ( 0 ‘1)) = (𝐹‘1))
2827oveq1d 7420 . . . 4 (𝐹𝑋 → (((𝐹‘1) − ( 0 ‘1))↑2) = ((𝐹‘1)↑2))
2915fveq1i 6877 . . . . . . . 8 ( 0 ‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2)
3011, 12fvpr2 7185 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
3117, 30mp1i 13 . . . . . . . 8 (𝐹𝑋 → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
3229, 31eqtrid 2782 . . . . . . 7 (𝐹𝑋 → ( 0 ‘2) = 0)
3332oveq2d 7421 . . . . . 6 (𝐹𝑋 → ((𝐹‘2) − ( 0 ‘2)) = ((𝐹‘2) − 0))
3423, 3rrx2pyel 48692 . . . . . . . 8 (𝐹𝑋 → (𝐹‘2) ∈ ℝ)
3534recnd 11263 . . . . . . 7 (𝐹𝑋 → (𝐹‘2) ∈ ℂ)
3635subid1d 11583 . . . . . 6 (𝐹𝑋 → ((𝐹‘2) − 0) = (𝐹‘2))
3733, 36eqtrd 2770 . . . . 5 (𝐹𝑋 → ((𝐹‘2) − ( 0 ‘2)) = (𝐹‘2))
3837oveq1d 7420 . . . 4 (𝐹𝑋 → (((𝐹‘2) − ( 0 ‘2))↑2) = ((𝐹‘2)↑2))
3928, 38oveq12d 7423 . . 3 (𝐹𝑋 → ((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
4039fveq2d 6880 . 2 (𝐹𝑋 → (√‘((((𝐹‘1) − ( 0 ‘1))↑2) + (((𝐹‘2) − ( 0 ‘2))↑2))) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
419, 40eqtrd 2770 1 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  {csn 4601  {cpr 4603  cop 4607   × cxp 5652  cfv 6531  (class class class)co 7405  m cmap 8840  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466  2c2 12295  cexp 14079  csqrt 15252  distcds 17280  𝔼hilcehl 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-field 20692  df-staf 20799  df-srng 20800  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-refld 21565  df-dsmm 21692  df-frlm 21707  df-nm 24521  df-tng 24523  df-tcph 25121  df-rrx 25337  df-ehl 25338
This theorem is referenced by:  ehl2eudis0lt  48706  itscnhlinecirc02plem3  48764
  Copyright terms: Public domain W3C validator