| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsfval | Structured version Visualization version GIF version | ||
| Description: The value of the function appearing in xpsval 17476. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| Ref | Expression |
|---|---|
| xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 2 | 1 | opeq2d 4831 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 4 | 3 | opeq2d 4831 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 〈1o, 𝑦〉 = 〈1o, 𝑌〉) |
| 5 | 2, 4 | preq12d 4693 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {〈∅, 𝑥〉, 〈1o, 𝑦〉} = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| 6 | xpsff1o.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 7 | prex 5377 | . 2 ⊢ {〈∅, 𝑋〉, 〈1o, 𝑌〉} ∈ V | |
| 8 | 5, 6, 7 | ovmpoa 7507 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {〈∅, 𝑋〉, 〈1o, 𝑌〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {cpr 4577 〈cop 4581 (class class class)co 7352 ∈ cmpo 7354 1oc1o 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: xpsff1o 17473 xpsaddlem 17479 xpsvsca 17483 xpsle 17485 xpsdsval 24297 |
| Copyright terms: Public domain | W3C validator |