![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfval | Structured version Visualization version GIF version |
Description: The value of the function appearing in xpsval 17512. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) |
Ref | Expression |
---|---|
xpsfval | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
2 | 1 | opeq2d 4879 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩) |
3 | simpr 485 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
4 | 3 | opeq2d 4879 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩) |
5 | 2, 4 | preq12d 4744 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}) |
6 | xpsff1o.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) | |
7 | prex 5431 | . 2 ⊢ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V | |
8 | 5, 6, 7 | ovmpoa 7559 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4321 {cpr 4629 ⟨cop 4633 (class class class)co 7405 ∈ cmpo 7407 1oc1o 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 |
This theorem is referenced by: xpsff1o 17509 xpsaddlem 17515 xpsvsca 17519 xpsle 17521 xpsdsval 23878 |
Copyright terms: Public domain | W3C validator |