MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfval Structured version   Visualization version   GIF version

Theorem xpsfval 17529
Description: The value of the function appearing in xpsval 17533. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsfval ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsfval
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
21opeq2d 4844 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
3 simpr 484 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
43opeq2d 4844 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ⟨1o, 𝑦⟩ = ⟨1o, 𝑌⟩)
52, 4preq12d 4705 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
6 xpsff1o.f . 2 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 prex 5392 . 2 {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ V
85, 6, 7ovmpoa 7544 1 ((𝑋𝐴𝑌𝐵) → (𝑋𝐹𝑌) = {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4296  {cpr 4591  cop 4595  (class class class)co 7387  cmpo 7389  1oc1o 8427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  xpsff1o  17530  xpsaddlem  17536  xpsvsca  17540  xpsle  17542  xpsdsval  24269
  Copyright terms: Public domain W3C validator